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Zusammenfassung

Die Magnetresonanztomographie und die Elektrochirurgie gehéren seit vielen Jahren zu den
diagnostischen und therapeutischen Verfahren der Medizin. Trotz vieler Vorteile bergen die-
se Verfahren auch gesundheitliche Risiken. Dies betrifft insbesondere Patienten mit aktiven
oder passiven Implantaten, die durch die induzierten oder eingeprégten Stréme mit einer Funk-
tionsstorung ihres Implantats oder einer Erwirmung von Elektroden im und am Kérper rechnen
miissen. Bei allen Nutzen muss daher stets die Sicherheit des Patienten beachtet werden.

Inhalt dieser Arbeit sind Untersuchungen der Patientensicherheit bei der MR-Tomographie und
der Elektrochirurgie mit Hilfe feldtheoretischer Methoden. Dazu gehéren sowohl numerische Stu-
dien und feldtheoretische Absché&tzungen, als auch experimentelle Untersuchungen. Es wurden
dabei experimentelle Aufbauten in numerische Modelle umgesetzt und analog zum klinischen
Experiment simuliert. Des weiteren wurden mit Hilfe von hochaufgelésten Koérperdatensitzen
numerische Modelle des menschlichen Kérpers erstellt, welche Einblicke in die Feldverteilung im
Korper erméglichten.

Es wurden experimentelle und numerische Untersuchungen zur Erwdrmung von Schrittmacher-
elektroden und Kabeln durch Hochfrequenzpulse von MR-Tomographen durchgefiihrt. Die Fr-
gebnisse von Studien mit hochaufgelosten Modellen des menschlichen Korpers zeigten, dass
die Aussagen aus experimentellen Phantomstudien nicht uneingeschrinkt auf den Menschen
tibertragen werden kénnen. Die berechneten Erwirmungen an Elektrodenspitzen in den Kérper-
modellen lagen deutlich unter den Werten aus Phantomstudien. Insgesamt konnte bei keinem be-
rechneten Modell eine gewebeschidigende Erwirmung nachgewiesen werden. Es wird vermutet,
dass fiir Patienten mit Implantaten weitaus weniger Risiken bestehen, als bisher angenommen.
Sicherheitsbestimmungen, die allein aus Phantomexperimenten abgeleitet werden, sind daher in
Frage zu stellen.

Weiterhin wurden die Auswirkungen von gepulsten magnetischen Gradientenfeldern im Hin-
blick auf die mégliche Stimulation von Muskel- und Nervengewebe untersucht. Mit Hilfe einer
Fourierreihenentwicklung wurden zwei typische Gradientenpulsformen zerlegt, um so die Stréme
in einem K&rpermodell berechnen zu kénnen. Es konnte gezeigt werden, dass heutige Gradienten-
systeme in der Lage sind, auch tieferliegende Strukturen wie den Herzmuskel zu stimulieren. Mit
dem hier vorgestellten Verfahren ist es méglich, beliebige Gradientenpulsformen zu betrachten
und numerisch die Risiken fiir eine Stimulation von Muskel- und Nervengewebe abzuschéitzen.

Bei der Elektrochirurgie spielt die Erwdrmung unter der Neutralelektrode eine wichtige Rol-
le, da es zu Verbrennungen der Haut kommen kann. Es wurde ein numerisches Modell eines
menschlichen Oberschenkels mit einer Neutralelektrode erstellt. Dabei konnte gezeigt werden,
dass durch einen zusdtzlichen Auflenring die Erwirmung der Hautoberfliche verringert werden
konnte. Ausgehend von diesen Ergebnissen wurde mit einer theoretischen Abschitzung ein Zu-
sammenhang zwischen Elektrodengréfie und maximaler Hauttemperatur abgeleitet, der danach
numerisch bestétigt wurde. Dies eréffnet neue Moglichkeiten der Neutralelektrodenentwicklung
insbesondere im Hinblick auf kleinere Kinder- und Babyelektroden.

Insgesamt konnte in dieser Arbeit gezeigt werden, dass es mit den zur Verfiigung stehenden
numerischen Methoden moglich ist, wichtige Fragestellungen aus der medizinischen Praxis zu
beantworten und durch neue Einblicke die Sicherheit flir Patienten bei der Magnetresonanz-
tomographie und Elektrochirurgie zu verbessern. Die numerischen Methoden, gekoppelt mit
feldtheoretischen Abschitzungen, zeigten sich zum Teil sogar experimentellen Studien durch
eine hohere Genauigkeit und damit grofiere Aussagekraft der Ergebnisse tiberlegen.






Abstract

Magnetic resonance imaging and electrosurgery are common therapeutic and diagnostic proce-
dures in modern medicine. In spite of their many advantages these procedures bear some risks
for patients. This relates especially to patients with active or passive implants, which may suff-
er interference or damage as a result of induced currents in the patient’s body. These induced
currents may also result in the heating of tissue in the vicinity of implanted or attached elec-
trodes. Due to these risks patient safety is an issue which requires careful consideration of the
phenomena involved.

The contents of this thesis include investigations of patient safety during magnetic resonance
imaging and electrosurgery using methods based on electromagnetic theory. These involve nume-
rical studies, theoretical approximation and experimental investigations. The simulations were
set up according to clinical experiments using high-resolution models of the human body, which
allowed a closer look into the field distribution inside the body.

Experimental and numerical investigations regarding the heating of pacemaker electrodes and
wires by radiofrequency pulses of MR-scanners were performed. The results of numerical studies
with high-resolution models of the human body showed that the conclusions drawn from experi-
mental investigations using saline body phantoms cannot be transferred to the human body. The
calculated heating at electrode tips in the body models showed significantly lower values than
in saline phantoms. Altogether no harmful heating effects could be found in any investigated
numerical body model. It seems likely that patients with implants are exposed to fewer risks
than often postulated. Safety regulations which are derived only from phantom studies must be
questioned.

Furthermore, the impact of pulsed magnetic gradient fields regarding stimulation of muscle and
nervous tissue was investigated. Using a Fourier series expansion two gradient pulse forms were
analysed in order to calculate the induced currents in a numerical model of the human body. It
was shown that the gradient systems of modern MR-scanners are also able to stimulate deeper
structures such as the heart muscle. With the procedure presented in this thesis it is possible
to analyse a wide variety of different gradient pulse forms and numerically estimate the risks of
stimulation of excitable tissue.

The heating of the skin under return electrodes is of major interest in electrosurgery, as burning
of the skin occurs under certain circumstances. In this thesis a numerical model of the human
thigh with a return electrode was set up. It could be shown that adding a non connected
circumferential ring to the return electrode significantly reduces the heating of the skin. A
theoretical investigation showed a correlation between return electrode size and maximum skin
temperature and was also proven numerically. This offers new possibilities in the development
of smaller return electrodes for children and infants.

In conclusion, the results of this thesis have shown that it is possible to answer important
questions in medicine by using available numerical methods. Through new insights into the
impact of magnetic resonance imaging and electrosurgery the safety of patients undergoing these
procedures could be significantly improved. The results obtained through numerical methods in
addition to theoretic electromagnetic approximations were found to show a higher degree of
accuracy, and thus yielded a more exact representation of the phenomena observed.
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Kapitel 1

Einfiihrung und Problemstellung

1.1 Motivation und Aufgabenstellung

Die Magnetresonanztomographie und die Elektrochirurgie gehoren seit vielen Jahren zu den dia-
gnostischen und therapeutischen Verfahren der Medizin. Die hervorragende Bildqualitdt und die
Verwendung nicht-ionisierender Strahlung macht die MR-Tomographie zu einem der am meisten
verwendeten bildgebenden Verfahren. Ebenso ermdoglicht die Elektrochirurgie durch den Einsatz
hochfrequenter Stréme schonendere operative Eingriffe und verhindert durch die koagulierende
Wirkung der hohen Stromdichte am Schneidwerkzeug weitgehend grofie Blutverluste wahrend
einer Operation.

Trotz dieser Vorteile bergen diese Verfahren auch gesundheitliche Risiken. Dies betrifft ins-
besondere Patienten mit aktiven oder passiven Implantaten, die durch die induzierten oder
eingepragten Strome mit einer Funktionsstérung ihres Implantats oder einer Erw&rmung von
Elektroden im und am Ké&rper rechnen miissen. Allerdings sind auch ohne Implantate gesund-
heitliche Risiken fiir Patienten vorhanden. Dies ist z. B. die Erwirmung von Koérpergewebe durch
Energiedeposition aus elektromagnetischen Feldern und damit lokale Gewebeschdden oder eine
Uberlastung des thermoregulatorischen Systems. Bei Neutralelektroden, die in der monopola-
ren Elektrochirurgie zur Rickfiihrung des Stromes zum Hochfrequenzgenerator dienen, wird z.
B. in der Literatur von Verbrennungen der Haut an der Kontaktstelle berichtet. Weiterhin ist
durch Stréome in einem gewissen Frequenzbereich die Stimulation von Muskel- und Nervengewe-
be méglich. Eine unerwiinschte Stimulation des Herzmuskels kann zu Herzkammerflimmern und
damit auch zum Tod des Patienten fithren.

Bei allen Nutzen dieser medizinischen Verfahren muss daher stets die Sicherheit des Patien-
ten beachtet werden. Aus diesem Grund gelten z. B. heute nach wie vor aktive medizinische
Implantate im menschlichen Koérper als Kontraindikation fiir eine Untersuchung im Magnetreso-
nanztomographen, obwohl es gerade in diesen Féllen besonders wiinschenswert wére, mit diesem
bildgebenden Verfahren den Therapieerfolg zu tiberpriifen und zu iiberwachen.

Inhalt dieser Arbeit sind Untersuchungen der Patientensicherheit bei der Magnetresonanztomo-
graphie und der Elektrochirurgie mit Hilfe feldtheoretischer Methoden. Dazu gehéren sowohl nu-
merische Studien und feldtheoretische Abschétzungen, als auch experimentelle Untersuchungen,
wobei der Schwerpunkt auf der Durchfiihrung numerischer Studien liegt. In dieser Arbeit werden
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dabei experimentelle Aufbauten in numerische Modelle umgesetzt und analog zum klinischen
Experiment simuliert. Des weiteren werden mit Hilfe von hochaufgelosten Korperdatensitzen
numerische Modelle des menschlichen Ko&rpers erstellt, welche Einblicke in die Feldverteilung
im Korper ermoglichen, die in experimentellen Studien mit Korperphantomen nicht erfasst
werden koénnen. Im einzelnen werden Fragestellungen aus dem Bereich der MR-Tomographie
(Hochfrequenz- und Gradientenfelder) und der Elektrochirurgie (Neutralelektroden) untersucht.

Es soll gezeigt werden, mit welchen der verfligharen numerischen Methoden elektro-
thermodynamische Vorgénge mit hochaufgeltsten Modellen des menschlichen Kérpers unter-
sucht werden kénnen. Weiterhin sollen mit der ermittelten numerischen Methode die Auswir-
kungen von magnetischen Hochfrequenz- und Gradientenfeldern der MR-Tomographie auf den
menschlichen Koérper und auf implantierte Elektroden untersucht und mit vorhandenen experi-
mentellen Studien aus der Literatur verglichen und bewertet werden. In weiteren Studien soll
das Erwirmungsverhalten von Neutralelektroden in der Elektrochirurgie an einem Oberschen-
kelmodell untersucht werden. Anhand der Ergebnisse sollen die fiir die Erwirmung verantwort-
lichen physiologischen Parameter und deren Abhéingigkeiten bestimmt und neue Konzepte fiir
Neutralelektrodendesigns abgeleitet werden, die zu einer Verringerung der Erwdrmung auf der
Hautoberfliche fiihren.

1.2 Aufbau der Arbeit

In Kapitel 1 wird die vorliegende Arbeit motiviert, die Aufgabenstellung erliutert und ein Uber-
blick tiber den Inhalt der weiteren Kapitel gegeben. Die numerischen, physikalischen und medi-
zinischen Grundlagen werden in den Kapiteln 2, 3 und 4 beschrieben. Die Ergebnisse der Arbeit
finden sich in den Kapiteln 5, 6, 7 und 8.

In Kapitel 2 wird die Finite-Integrations-Technik als Methode zur Lo&sung elektro-
thermodynamischer Probleme im menschlichen Kérper vorgestellt. Dabei wird im einzelnen auf
die Losung der Maxwell-Gleichungen im Frequenzbereich, sowie der Biowédrmeleitungsgleichung
im Zeitbereich eingegangen. Zur Verkiirzung der Rechenzeit des thermodynamischen Algorith-
mus wird eine adaptive Zeitschrittsteuerung vorgestellt. Danach wird die numerische Kopplung
beider Verfahren vorgestellt und ein Uberblick iiber das kommerzielle Softwarepaket MAFIA
gegeben.

Die zur numerischen Lésung notwendigen dielektrischen Parameter von Korpergewebe und die
zugehdrigen grundlegenden physikalischen Wechselwirkungsmechanismen werden mit einem kur-
zen historischen Uberblick in Kapitel 3 eingefiihrt. Es werden mathematische Modelle fiir die
Beschreibung der Frequenzabhingigkeit dieser Parameter vorgestellt und ihre Frequenz- sowie
Temperaturabhingigkeit diskutiert.

In Kapitel 4 wird auf die biologische Wirkung elektromagnetischer Felder eingegangen. Nach
einer Definition grundlegender Begriffe werden die beiden bekannten Effekte - Stimulation und
Erwdrmung von Gewebe - aufgezeigt und die physikalischen Wechselwirkungen und ihre Aus-
wirkung auf physiologischer Ebene dargestellt. Danach wird eine Einfiihrung in die Ableitung
von Grenzwerten gegeben, ausgehend von den physiologischen Gegebenheiten des menschlichen
Korpers. Die heute giiltigen Grenzwerte fir elektromagnetische Felder und Stréme sowie fiir die
Leistungsdeposition und Erwirmung von Gewebe im menschlichen Korper werden anschliefend
vorgestellt.




1.2 Aufbau der Arbeit

Die numerischen Voruntersuchungen werden in Kapitel 5 beschrieben. Dabei werden die Kon-
vergenzeigenschaften unterschiedlicher Algorithmen im Frequenz- und Zeitbereich untersucht
und Uberlegungen zur Erstellung von Gitternetzen mit hochaufgelésten Modellen des menschli-
chen Korpers vorgestellt. Weiterhin werden Rechenzeit- und Speicherplatzbedarf verschiedener
Algorithmen ermittelt und dem Konvergenzverhalten gegentiber gestellt. Zur Losung des ther-
modynamischen Problems werden die Ergebnisse von zwei Zeitintegrationsverfahren mit einer
analytischen Losung verglichen und bewertet. Im abschlieenden Unterkapitel wird die Imple-
mentierung der adaptiven Zeitschrittsteuerung getestet und Vergleichsrechnungen mit gepulster
und gemittelter Leistung einer HF-Quelle durchgefiihrt.

In Kapitel 6 werden die Ergebnisse der numerischen Berechnungen von HF-Feldern bei der MR-
Tomographie auf den menschlichen Kérper und auf implantierte Elektroden aufgezeigt. Hierbei
wird zunéchst eine eigene experimentelle Studie mit einem salzwassergefiillten Plexiglasphan-
tom beschrieben und die Ergebnisse mit experimentellen Studien aus der Literatur verglichen.
Danach folgt eine theoretische Betrachtung zur elektrischen Feldverteilung in quaderférmigen
Salzwasserphantomen und daran anschliefend die Konzeption und Ergebnisse einer numerischen
Studie mit 384 einzelnen Modellen eines Phantoms mit inliegendem Kabel, &hnlich zur Applika-
tion von Herzschrittmachern. Die Ergebnisse der numerischen Studie werden mit der Literatur
verglichen und diskutiert. Danach wird eine numerische Studie mit einem hochaufgel6sten Mo-
dell des menschlichen Kopfes mit Tiefenhirnstimulationselektrode und ein Oberkérpermodell
mit Herzschrittmacherelektrode im MR-Tomographen vorgestellt. Das Kapitel schlieft mit ei-
ner Diskussion und Bewertung der Ergebnisse im Vergleich zu Studien aus der Literatur.

Mit den Auswirkungen der magnetischen Gradientenfelder beschéftigt sich Kapitel 7. Nach einer
Einfiihrung in die Thematik werden zwei Gradientenpulsformen in eine Fourierreihe entwickelt.
Anschlieend wird ein numerisches Oberkérpermodell in einem Gradientenspulensystem vorge-
stellt und bei jeder harmonischen Frequenz das elektrodynamische Feldproblem gelést und die
Stromdichten im Korper bestimmt. Danach wird aufgezeigt, wie die Einzelergebnisse rekombi-
niert werden miissen, um den zeitlichen Verlauf der Stromdichte wihrend eines Gradientenpul-
ses zu ermitteln. Eine Bewertung {iber moégliche gesundheitliche Auswirkungen der betrachteten
Pulsformen schlieit das Kapitel ab.

In Kapitel 8 werden numerische Modelle zur Berechnung der Erwadrmung der Hautoberfliche bei
der Elektrochirurgie vorgestellt. Dabei wird zunfchst in einem historischen Abriss ein Uberblick
tber die Entwicklung von Neutralelektroden gegeben. Anhand einer Literaturstudie werden
Ideen fiir neue Neutralelektrodendesigns entwickelt. Danach wird ein Uberblick iiber gingige
Teststandards fiir Neutralelektroden gegeben. Im folgenden Unterkapitel werden die Ergebnis-
se der Modellrechnungen an einem Erwachsenenoberschenkelmodell aufgezeigt und diskutiert.
Danach werden die Ergebnisse der Modellrechnungen einer Kleinkinderneutralelektrode présen-
tiert. Die Berechnungen werden durch einige theoretische Uberlegungen beziiglich der zuliissigen
Grenzgrofle bei einer Verkleinerung der Neutralelektrode ergénzt. Das Kapitel endet mit einer
Diskussion und Zusammenfassung der Ergebnisse

Eine Zusammenfassung der wichtigsten Ergebnisse der gesamten Arbeit erfolgt in Kapitel 9.
Dort finden sich auch Anregungen zur Weiterarbeit in diesem Themengebiet.

In Anhang A finden sich mathematische Herleitungen zur Loésung der allgemeinen Wellenglei-
chung, zur Berechnung des Absolutbetrages der komplexen Feldamplitude und zur Fourierrei-
henentwicklung von Gradientenpulsformen. In Anhang B werden in Ubersichtstabellen die fiir
die Simulationen notwendigen physikalischen und dielektrischen Gewebe- und Materialparame-
ter angegeben.
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Kapitel 2

Finite Integrationstechnik

2.1 Einfiihrung

Der Begrift numerische Feldrechnung beinhaltet eine Vielzahl an Verfahren und Techniken zur
Ubersetzung physikalischer Probleme in Gleichungssysteme. Diese Verfahren lassen sich auf viele
verschiedene Gleichungstypen und damit Problemstellungen anwenden. Am bekanntesten sind
Anwendungen aus der Mechanik, der Elektrostatik und Elektrodynamik, sowie bei Problemen
der Thermodynamik.

Die numerische Feldrechnung kommt dann zum Einsatz, wenn die Komplexitit der betrachteten
Strukturen, wie z. B. von hochaufgelésten inhomogenen Modellen des menschlichen Koérpers und
aktiven Implantaten, eine analytische Losung der zugrunde liegenden Gleichungen nicht zul&sst.
In diesen Féllen stehen nur numerische Verfahren zur Auswahl, die eine n&herungsweise Losung
erlauben. Die bekanntesten Vertreter sind:

e die Finite-Integrations-Technik
e das Finite-Differenzen-Verfahren
e die Finite-Elemente-Methode

e die Boundary-Elemente-Methode
e die Momenten-Methode

e die Ersatzladungsmethoden

e die Monte-Carlo-Methode.

Fiir die Losung von numerischen Problemstellungen aus Bereichen der medizinischen Anwen-
dung eignen sich mehrere dieser numerischen N&dherungsverfahren. Dies sind insbesondere die
Finite-Integrations-Technik, das Finite-Differenzen-Verfahren und die Finite-Elemente-Methode
(FAIRES & BURDEN, 1994).




Finite Integrationstechnik

In dieser Arbeit wurde zur Losung der Problemstellungen die Finite-Integrations-Technik
gewahlt, da sie zur Lésung verschiedener Feldgleichungen und damit Problemkategorien in vo-
xelbasierten Datensitzen des menschlichen Ko6rpers besonders gut geeignet ist. Die Wahl fiel auf
das Finite-Integrations Programmpaket MAFIA (WEILAND ET AL., 1996), welches bereits ein
leistungsfahiges Werkzeug zur Verfligung stellt, was die Integration komplexer Korpermodelle
und die Berechnung von Problemen aus der medizintechnischen Praxis aus den unterschiedlich-
sten physikalischen Problemkategorien erméglicht. Die einzelnen Losermodule des Programm-
paketes lassen sich beliebig koppeln und erlauben damit auch die Berechnung von komplexeren
Vorgéngen. Dazu z&hlen z. B. die getrennte Losung hochfrequenter elektromagnetischer und
thermodynamischer Vorgénge, die sich zur Lésung gekoppelter elektrodynamischer und thermo-
dynamischer Felder verkniipfen lassen.

Im folgenden werden die Grundlagen der Finiten-Integrations-Technik zunéchst am Beispiel der
Maxwellschen Gleichungen aufgezeigt, die die Phinomene der Elektrostatik und der Elektro-
dynamik beschreiben. Es folgt eine kurze Einfiihrung in die Ableitung einer elektrodynami-
schen Systemgleichung zur Berechnung der Feldverteilung im eingeschwungenen Zustand bei
sinusformiger Feldanregung. Weiterhin werden die Berticksichtigung verlustbehafteter Materia-
lien, verschiedener Randbedingungen und die Verfahren zur Losung grofier Gleichungssysteme
angesprochen.

Danach werden die grundlegenden Gleichungen fiir den Warmetransport in biologischen Gewe-
ben zur Losung thermodynamischer Probleme im menschlichen Korper eingefiihrt und aufge-
zeigt, wie auch diese Problemstellung mit der Finiten-Integrations-Technik behandelt werden
kann. Im Gegensatz zur Losung von eingeschwungenen Zustédnden im Frequenzbereich werden
die thermodynamischen Probleme mit verschiedenen Zeitschrittverfahren gel6st, deren Grund-
lagen in eigenen Abschnitten vorgestellt werden. Mit Hilfe der darauf diskutierten adaptiven
Zeitschrittsteuerung fiir den thermodynamischen Léser ist eine effiziente Verkiirzung der Re-
chenzeiten bei Lésung thermodynamischer Probleme mdglich.

Darauf folgt eine Beschreibung der Moglichkeiten, wie sich die Berechnung elektrodynamischer
Verluste in leitfahigen dielektrischen Materialien mit dem thermodynamischen Losungsverfahren
koppeln lidsst, um so genauere Aussagen {iber den zeitlichen Verlauf von Erwdrmungen durch
elektromagnetische Hochfrequenzfelder zu erhalten. Mit einer kurzen Gesamtiibersicht iiber das
Programmpaket MAFIA wird das Kapitel abgeschlossen.

2.2 Ableitung der Gitter-Maxwell-Gleichungen

In den folgenden Abschnitten dieses Unterkapitels werden die Grundzlige der Finiten-
Integrations-Technik erldutert und ausfihrlich am Beispiel der Ableitung der Maxwell-Gleichung
gezeigt. Das vorgestellte Verfahren ldsst sich nicht nur auf die Maxwell-Gleichungen anwenden,
sondern steht fiir viele andere Feldprobleme zur Verfligung. Dies wird in einem der folgenden
Unterkapitel anhand einer grundlegenden thermodynamischen Gleichung gezeigt.

Zundchst werden in einer Formelsammlung die Maxwell-Gleichungen in differentieller sowie in-
tegraler Form und die Materialgleichungen angegeben. Der Umsetzung in die Gitter-Maxwell-
Gleichungen und die Gitter-Material-Gleichungen wird in den darauf folgenden zwei Abschnit-
ten gezeigt. Eine Darstellung der grundlegenden Eigenschaften der Gitter-Maxwell-Gleichung
im Vergleich zu den originalen Maxwell-Gleichungen schliefit das Unterkapitel ab.




2.2 Ableitung der Gitter-Maxwell-Gleichungen

Abbildung 2.1: Grundelegendes Beispiel fiir

ein Gitternetz G in kartesischen Koordina- y,

ten. Die einzelnen Koordinatenachsen sind

linear durchnummeriert. Das zu untersu- Yir

chende Volumen wird mit einem Gitternetz

iberzogen. Die Gitterschrittweite kann hier-

bei variabel gestaltet werden. Jeder entste-

henden Elementargitterzelle kénnen unter- z,

schiedliche Materialeigenaschaften zugewie- vs Z

sen werden. So kdnnen komplexe und inho- Y, Z, y
mogene Strukturen approximiert werden. Y, z Zi Z},X

X, X X, X X

2.2.1 Die Maxwell-Gleichungen

Alle makroskopischen elektromagnetischen Effekte lassen sich durch die vier Maxwellschen Glei-
chungen beschreiben, die als physikalische Gréfien die elektrische Feldstérke E, die elektrische
Verschiebungsdichte 13, die magnetische Feldst&rke I—?, die magnetische Flufidichte é, die Strom-
dichte J und die elektrische Raumladungsdichte p, enthalten. Diese vier Gleichungen sind sowohl
in differentieller als auch in dquivalenter integraler Form darstellbar:

ﬁxE:_a_B@?f E.dgz_ﬁfé-dff (2.1)
Gxioit D, ﬁ~d§=/<f+a—D>~d/Y 22)
V.D=p o ﬁ.dgz/pedv (2.3)
oV 14
V-B=0e¢ B-dA=0. (2.4)
v

Diese vier Gleichungen werden durch drei Materialgleichungen ergénzt, durch die die elektro-
magnetischen Feldgréfien miteinander verkn{ipft werden. Geht man von linearen, isotropen und
hysteresefreien Medien aus und nimmt zeit- und frequenzinvariante Materialeigenschaften an,
so ergeben sich:

[j = 8()€I~E (25)
B = pomH (2.6)
J=cE+J, . (2.7)

Die Groflen £g und pg stellen hierbei die elektrische und die magnetische Feldkonstante dar. Die
Groflen ¢, und p,. geben die relative Permittivitit und Permeabilitdt des Materials an. Die Grofle




Finite Integrationstechnik

(a) (b)

Abbildung 2.2: Beispiel fiir die raumliche Diskretisierung eines komplexen inhomogenen Kérpermo-
dells. Ausgehend von dem Kopfteil eines segmentierten Datensatzes (a) wird das zu untersuchende
Raumgebiet mit einem Gitternetz iiberzogen und das Korpermodell in unterschiedlich groBe Ele-
mentarzellen aufgeteilt. Die einzelnen Koordinatenachsen werden dabei linear durchnummeriert. So
sind lokale Verfeinerungen mdoglich wie in der Mitte des Gehirns in Bild (b) zu sehen sind. Zur
Verdeutlichung wurde ein Teil des Kopfmodells in Bild (b) ausgeschnitten.

o beschreibt die elektrische Leitfihigkeit. Die Gesamtstromdichte J wird durch eine eingeprégte
elektrische Stromdichte J. ergéinzt.

Die zu untersuchende Struktur wird mit einem Gitternetz G iiberzogen. Dieser Schritt wird
rdgumliche Diskretisierung genannt. Hierbei wird das Rechengebiet in eine endliche Anzahl kleiner
Teilvolumina aufgeteilt. Jeder einzelnen Gitterzelle kénnen beliebige anisotrope Materialeigen-
schaften zugeordnet werden. Dadurch lassen sich beliebig geformte Strukturen n&herungsweise
darstellen. Abbildung 2.1 zeigt die prinzipielle Gitterstruktur anhand eines einfachen kartesi-
schen Gitters. Abbildung 2.2 zeigt die r&umliche Diskretisierung am Beispiel eines komplexen
inhomogenen Kérpermodells.

2.2.2 Die Diskretisierung der Maxwell-Gleichungen

Bei dem Verfahren der Finiten-Integrations-Technik werden die Maxwellschen Gleichungen in
Integralform in entsprechende Matrizengleichungen umgewandelt und dabei die Integrale durch
N&iherungsausdriicke ersetzt. Dabei wird der Losungsraum der Maxwellschen Gleichungen auf
einen n-dimensionalen Raum abgebildet!. Der Vorteil dieser Methode ist, dass die Eigenschaften
der Losungen der Maxwell-Gleichungen erhalten bleiben. Fiir die Rotations-, Divergenz- und
Gradientenoperatoren ergeben sich dabei analoge Ausdriicke im diskreten Losungsraum. Im

15 stellt hierbei die Gesamtzahl der zu berechnenden Feldstirkewerte dar

10
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Abbildung 2.3: Oberflache von zwei Elementargitterzellen in einem kubischen Gitter mit der Kan-

tenlange A. Die Komponenten des elektrischen Feldes E sind tangential auf die einzelnen Gitterkanten

verteilt und zwischen den Knotenpunkten P als konstant angenommen. Die Komponenten der ma-

gnetischen Flussdichte B stehen senkrecht auf den Elementarflichen und bilden so ein duales Gitter

G. Als Niherung wird die magnetische Flussdichte durch eine Elementarfliche iiber die gesamte
Flache als konstant angenommen.

folgenden wird diese Methode kurz skizziert und an einem Beispiel erldutert. Im Anschluss
daran finden sich einige weiterfithrende Literaturhinweise.

Die Finite-Integrations-Technik erlaubt eine Vielzahl an moglichen Gitterstrukturen und ist
nicht nur auf zwei- oder dreidimensionale kartesische Gitter beschrankt, so sind z. B. auch kreis-
zylindrische Gitter moglich. Im folgenden werden aber ausschliellich Probleme in kartesischen
Gittern betrachtet.

Zum besseren Verstindnis der Methode beschrénken sich die folgenden Betrachtungen auf kubi-
sche Gitter. Ausgangspunkt fiir die beispielhafte Ableitung der Gitter-Maxwell-Gleichungen der
Finiten-Integrations-Technik ist die erste Maxwell-Gleichung in Integralform:

Die linke Seite dieser Gleichung besteht aus einem Linienintegral tiber die elektrische Feldstirke
entlang eines geschlossenen Weges. In dem hier betrachteten Gitternetz G stellt der elementare
Weg gerade den Umfang einer Seitenfliche einer Gitterzelle dar (vgl. Abbildung 2.3). Die In-
tegrationsfliche des Oberflichenintegrals auf der rechten Seite der Gleichung ist bereits durch
den Integrationsweg auf der linken Seite der Gleichung festgelegt, im hier betrachteten Fall die
Seitenfliche einer Elementarzelle.

11
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Durch geschickte Zuweisung der Komponenten des elektrischen Feldes E auf die einzelnen Lini-
en des Gitternetzes kann das Linienintegral der ersten Maxwell-Gleichung angenéhert werden.
Hierbei werden die Komponenten des elektrischen Feldes der einzelnen Gitterpunkte auf den
Kanten der Elementarzellen des Gitters G definiert. Die Komponenten von E werden hierbei
tangential auf den Gitterkanten des Gitters G angeordnet. Abbildung 2.3 zeigt in einer Drauf-
sicht die Oberfliche von zwei Elementarzellen. Jedem Gitterpunkt P sind jeweils drei Kanten?
fiir das elektrische Feld und die magnetische Flussdichte zugeordnet. Hierbei wird angenommen,
dass die jeweilige Feldstédrke sich entlang einer Kante zwischen zwei Punkten nicht dndert, also
konstant ist, was neben der rdumlichen Diskretisierung eine weitere Niherung darstellt. Mathe-
matisch lisst sich diese Ndherung fiir ein beliebiges Wegintegral ausdriicken als (BRONSTEIN &
SEMENDJAEV, 1991):

so+A A
[ )= a0+ ) 0B (2.8)

0

Der Vorteil dieses Ansatzes ist, dass die im Gitternetz berechnete tangentiale Feldstirke an
den Materialoberflichen immer stetig ist. So kann in jeder Elementarzelle eine unterschiedliche
Permittivitét ¢, zugelassen werden. Es ist einsichtig, dass die Berechnung aller drei Feldkompo-
nenten an einer Stelle im Gitter zu mehrdeutigen Feldkomponenten fiihren wiirde, sollten diese
senkrecht auf einem Ubergang zwischen zwei Materialien mit unterschiedlichen Permittivitéiten
stehen. Durch die hier geschilderte geschickte Verteilung der einzelnen Feldkomponenten auf die
Gitterkanten werden diese Probleme vermieden.

Aus dem Linienintegral wird dann unter Vernachlissigung der héheren Ordnungen O(A2) ein
normales Produkt aus der Lange der einzelnen Gitterkanten A mit den zugehdrigen Komponen-
ten der elektrischen Feldstédrke, welches eine elektrische Spannung entlang einer Kante darstellt.
Ausgehend von der Anordnung der einzelnen Komponenten nach Abbildung 2.3 ergibt sich fiir
die beiden Elementarflichen folgender algebraischer Ausdruck:

. A-(Eiy+ FEoy— FEyp — F
]4 E.die (Bie + By = Bia = Bry) ) (2.9)
JA A- (EQJ, + E3y - ES:L' - E2y)

Diese Umwandlung des Linienintegrals wird auf dem ganzen Gitter durchgefiihrt. Es ist moglich
die algebraische Losung in zwei Matrizen und einen Vektor aufzuteilen indem man die geome-
trischen Daten der untersuchten Struktur in eine Matrix {iberfiihrt, sowie die Vorzeichen der
einzelnen elektrischen Feldkomponenten in einer zweiten Matrix aufnotiert. Die Komponenten
der elektrischen Feldstérke lassen sich dann in einem Lésungsvektor angegeben und man erhilt
einen Teil der ersten Gitter-Mazwell-Gleichung. Wird dies an der Gleichung (2.9) durchgefiihrt,
so erhdlt man:

2Bei dieser Zuordnung der Gitterkanten zu den einzelnen Knotenpunkten stehen fiir einige Knoten am Rand
des Gitters nicht ausreichend Kanten zur Verfligung. Hier wird einfach das Gitter um eine Schrittweite erweitert.
Die so entstehenden Knoten und die iiberschiissigen Kanten werden nicht weiter beriicksichtigt.

12
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Abbildung 2.4: Zusatzllch zum Gitter G, welches auf den Kanten die Komponenten E, der elek-
trischen Feldstirke E tragt (schwarze Pfeile) kann ein duales Gitter G definiert werden. Auf den
Kanten von G werden die Komponenten By, der magnetische Flussdichte B definiert (graue Pfeile).
Die Kanten des dualen Gitters sind koordinatenachsenparallele Linien durch die Schwerpunkte aller
Seitenflachen des Gitters G. In jeder Elementarzelle kdnnen anisotrope Materialeigenschaften defi-
niert werden. Die Anordnung der Komponenten von E und B stellt sicher, dass nur stetige GroBen
berechnet werden. In Klammern ist die Anordung der drei anderen betrachteten FeldgroBen ange-
geben. Das sind im einzelnen die Verschiebungsstromdichte D und Leitungsstromdichte J, die wie
das elektrische Feld auf den Gitterkanten des Gitter G angeordnet sind und das magnetische Feld
ﬁ, dessen Komponenten auf dem dualen Gitter G liegen. (Aus Griinden der Ubersichtlichkeit fehlen
einige schwarze Pfeile und das duale Gitter ist nur angedeutet.)

Elz
1 -10 1 00 -10 0 0 ... A0 ... Ey,
00 11010 0 -10..1.]0aA Es | =C.D,&
: E2y
J . R ~ 3 .
A:—/
- (2.10)

Die Matrizen C und Dg sind von der Ordnung 3n X 3n und ebenso der Vektor €, wenn das
gesamte dreidimensionale Gitter aus n einzelnen Knoten P besteht.
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Eine analoge Aussage kann fiir die Feldkomponenten der magnetischen Flussdichte B gemacht
werden. Sie wird nur durch Komponenten repréasentiert, die senkrecht auf den Oberflachen der
einzelnen Zellen des Gitters G stehen. Als Niherung wird die magnetische Flussdichte an jedem
Punkt der betrachteten Elementarfliche als konstant angenommen. Fiir das Oberflichenintegral
iber eine konstante Funktion f(z,y,z) = S iiber eine quadratische Fliche mit der Kantenlinge
A kann dann folgende Nadherung angegeben werden:

/S-dA: A%.S+0(AaY. (2.11)
A

Aus dem Oberflichenintegral wird dann unter Vernachlissigung hoherer Ordnungen O(A*) ein
Produkt aus dem Flicheninhalt A2 der betrachteten Gitterzelle mit der als konstant angenomme-
nen magnetischen Flussdichte durch diese Fliache. Dies erlaubt die Fiillung jeder Elementarzelle
mit einem Material verschiedener Permeabilitéit.

Durch diese Anordnung der magnetischen Flussdichtekomponenten wird ein zweites Gitternetz,
das sogenannte duale Gitter G erzeugt, dessen Kanten durch die Mittelpunkte aller Seitenfléichen
des Glttels G parallel zu den Gitterlinien verlaufen. Im dualen Gitter Q sind d1e Komponen-
ten von B genauso angeordnet wie die Komponenten des elektrischen Feldes E im Gitter G.
Abbildung 2.4 veranschaulicht dieses Konzept.

Beriticksichtigt man die Verteilung der Feldkomponenten gemifi Abbildung 2.3 so kann mit Hilfe
von Gleichung (2.11) die rechte Seite der ersten Maxwell-Gleichung umgeformt werden:

AQ 0 Blz
Q/E.dg@ o A2 . 1.2 B. |—p..© (2.12)
ot Ja ) . ot N AT '
Da B

Die Gleichungen (2.10) und (2.12) kénnen zu einer einzigen Matrixgleichung zusammengefasst
werden:

C-D,é=-Duab. (2.13)

Diese Gleichung ist die erste Maxwellgleichung in ihrer dreidimensionalen Gitterdarstellung. Die
Matrix C ist eine Matrix auf dem 37 x 3n-dimensionalen Vektorraum der elektrischen Feldstirke
im Gitter G und stellt dort den Rotationsoperator dar. Dies ergibt sich in Analogie zu der ersten
Maxwellgleichung in differentieller Form (2.1). Diese Matrix enthilt nur die Komponenten 0, 1
und —1.

Die Matrix Dy ist ebenfalls 3n x 3n-dimensional und enthédlt die Lingen der einzelnen Kanten
der Elementarzellen auf denen die elektrischen Feldkomponenten definiert sind. Diese Matrix ist
eine reine Diagonalmatrix.

Die Matrix Dp ist ebenfalls eine 3n x 3n-dimensionale Diagonalmatrix und enthilt die Fléchen-
inhalte der einzelnen Elementarzellen.

Die zweite Gitter-Maxwell-Gleichung erhélt man analog zu (2.13). Dabei ist wiederum auf der
linken Seite ein Linienintegral analog zu (2.9) auszuwerten. Der Unterschied hierbei ist aber,
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2.2 Ableitung der Gitter-Maxwell-Gleichungen

dass diesmal das Linienintegral entlang der dualen Gitterkanten von G berechnet werden muss.
Die Leitungsstromdichte J und die Verschiebungsstromdichte %5 liegen wie die Komponen-
ten des elektrischen Feldes auf den Kanten des Gitters G und stoflen damit durch die Flichen
der Elementarzellen des dualen Gitters G. Es ergibt sich eine zu Gleichung (2.13) sehr #hnliche
Matrixgleichung, die aber nun Matrizenoperatoren enthilt, die auf dem dualen Gitter definiert
sind. Diese werden ebenfalls mit einer hochgestellten Tilde wie z. B. das duale Gitter G gekenn-
zeichnet:

— - 5 — ~ ~ — ~ — b
H-d§=/<J+a—>-dA<:>C-Ds-h=DA-(j+d) : (2.14)
A

Die Matrix C ist 3n x 3n-dimensional und stellt den dualen Rotationsoperator dar. Er ergibt
sich durch einfaches Transponieren der Matrix C.

Die Matrizen ]js und f)s enthalten analog zu den Matrizen D und D o die Langen und Fléchen-
inhalte der Elementarzellen und sind ebenfalls 3n x 3n-dimensional.

Auf die gleiche Art und Weise erhélt man die dritte und die vierte Gitter-Maxwell-Gleichung.
Um die Oberflichenintegrale auf der linken Seite zu 16sen wird gem#8 Gleichung (2.11) unter Ver-
nachlassigung héherer Ordnungen eine Summe {iber die sechs Elementarflichen einer Gitterzelle
gebildet, die aus den Produkten des Fliacheninhaltes mit der jeweils als konstant angenommenen
Verschiebungsstromdichten und magnetischen Flussdichten durch eine Elementarfliche besteht.
Dabei ist zu beachten, dass die Verschiebungsstromdichte D in der dritten Maxwell-Gleichung
senkrecht auf den Elementarflichen des dualen Gitters QN steht und daher im Gegensatz zur
vierten Maxwell-Gleichung duale Matrizenoperatoren zu definieren sind:

ﬁ-de:/pedv@S-f)A-&:f)v-qe (2.15)
av 14

f B-dA=0&S-Dy-b=0. (2.16)
v

Die Matrizen S und S stellen in Analogie zur differentiellen Form der dritten (2.3) und vierten
Maxwell-Gleichung (2.4) den diskreten Divergenzoperator dar und sind mit den Zahlen 0, 1 und
—1 nur diinn besetzt. Die Matrix ]jv enthélt analog zu den Matrizen ]jA und ]35 geometrische
Informationen iiber die einzelnen dualen Gitterzellen (hier das Volumen A3 im betrachteten
kubischen Gitter).

2.2.3 Die Diskretisierung der Materialgleichungen

Die zweite Gitter-Maxwell-Gleichung fiihrt direkt zu einer genaueren Betrachtung der Material-
gleichungen. Auf der linken Seite von Gleichung (2.2) muss das Linienintegral {iber die magneti-
sche Feldstiirke H im dualen Gitter bestimmt werden. Da auf den dualen Gitterkanten jedoch die
magnetische Flussdichte B definiert ist, muss dort das magnetische Feld durch den Quotienten
aus der Flussdichte und der Permeabilitit ersetzt werden. Die rechte Seite der Gleichung be-
schreibt die Verschiebungsstromdichte und die Stromdichte auf den Elementarflichen des dualen
Gitters. Dazu ist es notwendig die Verschiebungsstromdichte D aus dem elektrischen Feld E mit
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der Permittivitdt der einzelnen Materialien zu berechnen. Dadurch werden neue Matrizentypen
definiert, die die Materialeigenschaften enthalten. Die Materialgleichungen in der urpsringlichen
Form und der dazugehorigen Gitter-Matrix-Form lauten dann:

D=cpe,Esd=M, -& (2.17)
B=pmH<b=M, h (2.18)
J=cE+J,o]=M, -€+]jo . (2.19)

Die Matrizen M., M, und M, sind 3n x 3n-dimensionale Diagonalmatrizen, die die Permitti-
vitdten, Permeabilititen und die Leitfihigkeiten der einzelnen Elementarzellen enthalten. Der
Vektor je enthélt die eingeprigte Stromdichte.

Wenn fiir die GroBen E und B in erster Niherung gilt, dass die elektrische Feldstiarke entlang
einer Gitterkante und die magnetische Flussdichte auf einer Gitterfliche konstant ist, so wird
deutlich, dass dies bei den drei {ibrigen FeldgroBen ]__j, Jund H aufgrund der Materialgleichungen
nicht immer gilt. Dies ist dann der Fall, wenn an den Gitterkanten Zellen mit unterschiedlichen
Materialeigenschaften €, o oder u zusammentreffen, da jede Zelle des Gitters G unterschiedliche
Materialien enthalten darf.

Bei der Beschreibung der Materialgleichungen miissen daher Ndherungen verwendet werden.
Diese Ndherungen konnen beliebig komplex sein. Hier wird eine einfache Losung vorgestellt,
bei der zwischen den beiden Mittelpunkten der Gitterzellen mit unterschiedlichen Materialpa-
rametern ein linearer Verlauf der Materialeigenschaften angenommen wird. Dadurch werden die
kritischen Feldgréfien stetig. Die Matrizen M., M, und M, werden dann in den folgenden Glei-
chungen durch die Néherungsmatrizen D., D, und D, ersetzt. Eine ausfiihrliche Darstellung
zur Ableitung und Berechnung dieser Niherungsmatrizen findet sich bei HAHNE (1992), die
durch weitere Ausiihrungen von PINDER (1998) ergénzt wird.

2.2.4 Eigenschaften der Gitter-Maxwell-Gleichungen

Eine besondere Eigenschaft der aufgestellten Gitter-Maxwell-Gleichung ist, dass die analytischen
Eigenschaften der Losungen im diskreten Raum eine dquivalente Beziehung zueinander besitzen
(THOMA, 1997). Ein Wirbelfeld ist stets quellenfrei, d.h. V - (V x @) = 0. Dies gilt auch im
diskreten Raum in Form von:

Ss.c=S-C

0. (2.20)

Weiterhin ldsst sich zeigen, dass im Gitterraum ein Potentialfeld stets wirbelfrei ist, d. h.
V x ﬁ(ﬁ = 0. Dazu sind aber die Matrizen S und S zu transponieren und stellen so die dis-
kreten Gradientenoperatoren —ST und —S7T dar (WEILAND, 1987). Diese werden bendtigt, um
statische Probleme der Form E = —6@1) zu 18sen, bei denen die skalaren Potentiale ® auf den
einzelnen Knotenpunkten P des Gitters G definiert sind (siehe auch Abbildung 2.3). Die diskrete
Potentialgleichung ergibt sich dann als:

§=-ST.9. (2.21)
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2.2 Ableitung der Gitter-Maxwell-Gleichungen

Es lisst sich im diskreten Raum zeigen, dass Potentialfelder wirbelfrei sind (THOMA, 1997):

c.-ST=C-sT=o. (2.22)

Zusétzlich zu diesen Eigenschaften ist noch die sogenannte Dualitétsrelation zu erwidhnen. Die
Identitdt (2.22) ergibt sich augenscheinlich einfach durch Transponierung der Gleichung (2.20).
Dadurch lasst sich nach THOMA UND WEILAND (1998) ableiten, dass die dualen Operatoren
gerade durch Transponierung der normalen Operatoren erhalten werden. Allgemein gilt dann
im diskreten Raum:

c=CT. (2.23)

Um die Gitter-Maxwell-Gleichungen zu 16sen, werden die Gleichungen je nach Anwendungsfall
mit Hilfe von Matrizenoperationen zusammengefasst, um so einfachere Gleichungen zu erstellen.
Diese Umformungen finden auf dem Gitterraum G und G statt.

2.2.5 Vorteile der Finiten-Integrations-Technik

Der Vorteil, der sich bei Anwendung der Finiten-Integrations-Technik ergibt, liegt zum einen
an der Tatsache, dass bei der Ableitung der Gittergleichungen keinerlei Einschrinkungen der
Allgemeinheit notwendig waren. Weder die Materialverteilung noch die Zeitabhéngigkeit sind
eingeschriankt. Dies ermoglicht die Anwendung der Finiten-Integrations-Technik bei vielen unter-
schiedlichen Problemklassen, auch {iber die Maxwell-Gleichungen hinaus, wie in einem anderen
Anwendungsfall weiter unten gezeigt wird.

Sicherlich ist das hier beschriebene Verfahren nicht das einzige mégliche Diskretisierungsverfah-
ren. Es scheint sogar zunichst einfacher, alle sechs Feldkomponenten an den einzelnen Gitter-
knotenpunkten zu definieren. Dies fiihrt sogar zu einfacheren Matrixgleichungen. Allerdings gibt
es hierbei - wie bereits oben erwdhnt - Probleme mit unstetigen Feldkomponenten an Materi-
allibergéngen, die diesen Diskretisierungsansatz scheitern lassen.

Mehr Informationen {iber die Grundlagen der hier vorgestellten Finiten-Integrations-Technik
finden sich bei WEILAND (1977). Eine sehr ausfiihrliche Darstellung in deutscher Sprache findet
man in dieser Arbeit von WEILAND (1987). Die Entwicklung des Softwarepaketes MAFIA beruht
auf zahlreichen Dissertationen, die am Fachbereich fiir Elektrotechnik und Informationstechnik
der Universitét Darmstadt durchgefiihrt worden sind.

Im folgenden wird eine Auswahl aus diesen Dissertationen zu speziellen Fragestellungen gegeben,
die die verwendeten numerischen Ldsealgorithmen beschreiben. Bei DOHLUS (1992) finden sich
Darstellungen zur Losung der Maxwell-Gleichungen im Zeitbereich, die in der Arbeit von THO-
MA (1997) weitergefiihrt werden. Mit kreiszylindrischen Gittern beschiftigt sich die Arbeit von
DEHLER (1994). Probleme im Frequenzbereich betrachtet die Dissertation von HAHNE (1992).
Eine umfassende Darstellung zur Losung gekoppelter elektromagnetischer und thermodynami-
scher Felder findet sich in der Arbeit von PINDER (1998).
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2.3 Die Gitter-Maxwell-Gleichungen im Frequenzbereich

In den folgenden Abschnitten wird gezeigt, wie die Gitter-Maxwell-Gleichungen kombiniert und
umgeformt werden koénnen. Diese Umformungen dienen dazu, eine Systemgleichung abzulei-
ten mit der sich eingeschwungene elektrische Felder bei sinusférmiger Feldanregung berechnen
lassen. Die mathematische Darstellung vereinfacht sich erheblich durch Einfiihrung komplexer
Feldgréflen, was im néchsten Abschnitt demonstriert wird.

2.3.1 Ableitung der diskreten Systemgleichung

Bei sinusférmiger Feldanregung kénnen im eingeschwungenen Zustand alle zeitabhingigen
Gréflen durch ihre komplexe Amplitude wiedergegeben werden:

F(t)=Re{f e/} = fam - cos (Wt + fpn) - (2.24)

Die Amplitude fa,, und Phase fp, einer komplexen Funktion f ergibt sich nach BRONSTEJN
UND SEMENDJAEV (1991) aus:

Fam = /e (£} +Im{f)? (2.25)

Jm {f}
Re{f}

frn = ¢ = arctan (2.26)

Die Zeitableitung 9/0t geht in diesem Fall tiber in eine Multiplikation mit dem term jw, da gilt:

%f(t) =Re{jw- - e/} = fay - w - sin (Wt + fpn) - (2.27)

Ersetzt man in den ersten beiden Gitter-Maxwell-Gleichungen (2.13) und (2.14) alle Felder durch
die jeweiligen komplexen Amplitudenvektoren (z. B. € = &) und beriicksichtigt den Ubergang
der Zeitableitung in eine einfache Multiplikation mit jw, so erhélt man unter Einbeziehung der
diskreten Materialgleichungen folgendes Gleichungssystem:

Setzt man Gleichung (2.28) in Gleichung (2.29) ein, so erhiilt man die sogenannte diskrete Curl-

Curl-Gleichung:

(é-f)s-D;1-D;l-C-Ds+jw.1")A-D(,—w2-f)A.D6)-gz—jw-f)A-L. (2.30)
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2.3 Die Gitter-Maxwell-Gleichungen im Frequenzbereich

Diese Gleichung entspricht folgender analytischen Gleichung mit komplexen Feldgréfien, die
ebenfalls aus der ersten und der zweiten Maxwell-Gleichung abgeleitet werden kann (BECKER
ET AL., 1994):

e 1/ o . . -
Vox - (v X E) — w%E + jwol = —jwd, . (2.31)
I
Der Name Curl-Curl liegt in dem doppelten Rotationsoperator (Englisch: Curl) auf der linken
Seite von Gleichung (2.31) begriindet.

Verschwindet die rechte Seite von Gleichung (2.30), d.h. wird im betrachteten Volumen kein
Strom eingeprégt, so beschreibt diese Gleichung ein algebraisches Eigenwertproblem. Im folgen-
den werden jedoch nur Probleme mit eingeprégten Strémen behandelt, so dass sich die weitere
Betrachtung auf den inhomogenen Fall von Gleichung (2.30) beschrinkt.

Gleichung (2.30) beschreibt ein komplexes lineares Gleichungssystem mit symmetrischer Sy-
stemmatrix. Zwar ist die Teilmatrix CDsDﬁlechs positiv semidefinit (PINDER, 1998),

durch die Subtraktion der Diagonalmatrix w?D D, werden die Eigenwerte aber in negative
Richtung verschoben. Dadurch kann die Systemmatrix indefinit werden. Betrachtet man Struk-
turen mit endlicher Leitfahigkeit wie z. B. Gewebe des menschlichen Korpers, wird durch die
Diagonalmatrix jwDaD, die Systemmatrix zusitzlich komplex, was eine stabile Losung des
Gleichungssystemes erschwert.

Es ist moglich durch die Addition eines geeigneten Termes das Spektrum der Eigenwerte wie-
der in positive Richtung zu verschieben, ohne die dynamischen Losungen zu verindern und so
im verlustfreien Fall die sogenannte diskrete Helmholtzgleichung bei niedrigen Frequenzen zu
berechnen (HAHNE, 1992).

Der Vorteil ist dann, dass die Helmholtz-Systemmatrix im verlustfreien Fall positiv definit und so
das Gleichungssystem insgesamt einfacher zu losen ist. Diese Vorteile gehen aber durch zweierlei
verloren. Zum einen gilt dies nur fiir kleine Frequenzen, d. h. Félle in denen die Wellenlénge des
anregenden Stromes grofl gegeniiber dem betrachteten Rechenvolumen ist. Zum anderen erhilt
man sofort wieder eine komplexe Systemmatrix, werden Strukturen mit endlichen Leitfdhig-
keiten untersucht, wie sie die hier betrachteten Korpermodelle generell besitzen. Bei einigen
Modellen ist zudem auch die anregende Frequenz nicht mehr klein genug, so dass in jedem Fall
eine Losung des Problems mit der Helmholtzgleichung ausscheidet, da die wesentlichen Vorteile
verloren gehen und zusétzlich der héhere Speicher- und Rechenzeitbedarf dann einen gewichtigen
Nachteil darstellt (siehe hierzu Abschnitt 5.2.1). Das bedeutet, dass letzten Endes doch die oben
beschriebene Curl-Curl-Gleichung verwendet werden musste, die trotz der genannten Nachteile
die bessere Alternative zur Losung der numerischen Probleme in dieser Arbeit darstellt.

2.3.2 Dielektrische und magnetische Verluste

In der vorgestellten Matrixgleichung (2.30) kénnen auch dielektrische und magnetische Verluste
berticksichtigt werden. Die Permittivitit ¢, ist dann komplex und definiert als ¢, = el — jel.
Dadurch wird auch die Permittivitdtsmatrix D, komplex. Das gleiche gilt fiir die Permeabilitét

ur, die bei Berticksichtigung magnetischer Verluste {ibergeht in die komplexe Permeabilitit K-

Da in den hier betrachteten Beispielen die Feldanregungen stets monofrequent sind, kénnen
dielektrische Verluste auch in der Leitfihigkeit o berticksichtigt werden. Dadurch bleibt der
imaginére Anteil von g, ungenutzt und die Permittivitét reell:
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o = 0y + wepe! (2.32)

Dies erfolgt in Anlehnung an die verfligbaren dielektrischen Parameter fiir menschliches Korper-
gewebe aus der Literatur, da hierbei neben dem Realteil der Permittivitét ¢, die Leitfdhigkeit
o als Summe aus frequenzunabhéngiger statischer lonenleitfahigkeit o5 und Leitfahigkeit auf-
grund in Phase schwingender polarisierbarer Ladungen angegeben ist (GABRIEL ET AL., 19964,
PETHIG, 1991).

Den dielektrischen Eigenschaften von menschlichem Gewebe ist hier ein eigenes Kapitel gewid-
met. Daher soll an dieser Stelle nicht weiter auf die speziellen Eigenschaften von Kérpergewebe
eingegangen werden, sondern direkt auf die ausfihrlichen Darstellung in Kapitel 3 verwiesen
werden.

2.3.3 Wahl der Randbedingungen

Eine weitere Entscheidung, die vor der Lésung des numerischen Problems getroffen werden muss,
ist die Wahl der Randbedingungen an den Seitenréindern des betrachteten endlichen Volumens.
Die beiden einfachsten Méoglichkeiten, das Rechenvolumen abzuschlielen, sind die Randflachen
als ideal elektrisch leitend oder ideal permeabel zu betrachten. Das fiihrt dazu, dass die tangen-
tialen Feldstdrkekomponenten des elektrischen Feldes auf dem Gitter G oder die tangentialen
magnetischen Flussdichtekomponenten auf dem dualen Gitter G verschwinden (HAHNE, 1992).

Weiterhin gibt es noch die Mdglichkeit offene Randbedingungen zu w#hlen, bei denen ein An-
schluss des Rechenvolumens an den freien Raum simuliert wird (KRAWCZYK & WEILAND,
1988). Dieses Verfahren ist aber nur fiir senkrecht einfallende ebene Wellen reflexionsfrei (MA -
FIA, 2000B). Daher ist bei der Modellgenerierung darauf zu achten, dass ein ausreichend grofier
Abstand vom Modell zum Rand eingehalten wird, um die Reflexionen gering zu halten. Diese
Problematik wird in Abschnitt 5.2.3 weiter erlautert.

2.3.4 Losung des linearen Gleichungssystems

Zur numerischen Lésung des linearen Gleichungssystems, welches durch Gleichung (2.30) defi-
niert wird, existieren zahlreiche Verfahren, auf die hier nur kurz mit den entsprechenden Lite-
raturangaben verwiesen wird. Im Prinzip wird mit der rechten Seite von Gleichung (2.30) eine
Stromverteilung auf den Gitterkanten von G als Anregung vorgegeben und mit Hilfe numerischer
Verfahren eine Losung fiir das resultierende elektrische Feld bestimmt. Mit dem so berechneten
elektrischen Feld lassen sich unter Berticksichtung der dielektrischen Materialparameter mit Glei-
chung (2.32) und Gleichung (4.7) die Joule’schen Verluste im betrachteten Volumen bestimmen.
Diese Werte kénnen dann dem weiter unten beschriebenen thermodynamischen Algorithmus zur
Verfiigung gestellt werden, mit dem der zeitliche Verlauf der Erwdrmung berechnet werden kann.

Da die Komplexitdt der betrachteten Probleme direkte Methoden wie das Gaufische Elimina-
tionsverfahren ausschliesst, muss mit iterativen Methoden gearbeitet werden. Die Probleme,
das beschriebene Gleichungssystem zu l6sen, liegen in der Indefinitheit der komplexen System-
matrix aufgrund der Modelle mit verlustbehafteten Materialien, was herkémmlichen iterativen
Methoden Schwierigkeiten bereitet. Hierzu eignen sich erweiterte Verfahren auf Basis der konju-
gierten Gradienten. Einfiihrungen in die Grundlagen dieser Verfahren finden sich bei AXELSSON
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(1996); FAIRES UND BURDEN (1994); SAAD (1995) und SACHSE (1998) und sollen hier nicht
néher erldutert werden.

Ein geeignetes Verfahren zur Losung der diskreten Curl-Curl-Gleichung (2.30) mit verlustbe-
hafteten Materialien ist das sogenannte COCGSSOR-3Verfahren. Dieser Algorithmus ist eine
Erweiterung der konjugierten Gradienten und steht mit entsprechenden Méglichkeiten der Sy-
stemmatrixvorkonditionierung als Losealgorithmus im Programmpaket MAFIA zur Verfiigung.
Alternativ dazu steht zusétzlich eine Reihe moderner Krylov-Unterraumverfahren zur Verfiigung
(PSBCGR* und PQMR?), die in bestimmten Fillen bessere Konvergenzeigenschaften als das
erweiterte konjugierte Gradientenverfahren zeigen (CLEMENS ET AL., 1996).

Eine ausfihrliche Darstellung angeregter zeitharmonischer Felder und deren Ldsungsverfahren
mit besonderer Betrachtung des COCGSSOR-Verfahrens findet sich bei HAHNE (1992). Die
neueren PSBCGR- und PQMR-Verfahren werden von CLEMENS UND WEILAND (1998) be-
schrieben. Die Untersuchung der Konvergenzeigenschaften verschiedener Ldsealgorithmen des
Programmpaktes MAFIA ist Gegenstand von Abschnitt 5.2.6.

2.4 Ableitung der Gitter-Wirmeleitungsgleichung

Die Absorption elektromagnetischer Energie im menschlichen Korper fiihrt zu einer Erwdrmung
des Gewebes. Daher ist im allgemeinen nicht nur die Berechnung der im Korpermodell absor-
bierten Leistung interessant, sondern auch die Temperaturverteilung wahrend und nach der
Einwirkung der elektromagnetischen Felder auf das Gewebe. Mit der im vorhergehenden Ab-
schnitt berechneten Verlustleistung kann durch iteratives Losen der Warmeleitungsgleichung im
Zeitbereich die Temperaturverteilung im Rechenvolumen bestimmt werden.

Zunichst werden die Grundlagen des Wérmetransports in biologischen Geweben beschrieben,
der sich néherungsweise durch die Biowirmeleitungsgleichung beschreiben ldsst. Im darauf fol-
genden Abschnitt wird diese Gleichung analog zu den Maxwell-Gleichungen mit Hilfe der Finiten-
Integrations-Technik diskretisiert und in eine Matrixgleichung umgeformt.

2.4.1 Grundlagen des Warmetransports

Die grundlegenden Wéarmetransportmechanismen sind die Wérmeleitung, die Konvektion und
die Wéarmestrahlung. Die Warmeleitung wird durch den Energietransport durch interatomaren
Impulsaustausch und bei Metallen zusétzlich durch Elektrondendiffusion bewirkt. Die Konvekti-
on erfordert eine Strémung von Materie und ist nur in fluiden Medien méglich. Bei der Warme-
strahlung wird die Wéarmeenergie durch elektromagnetische Strahlung transportiert. Oft treten
alle drei Mechanismen gemeinsam auf. Bei Modellen des menschlichen Kérpers ist vor allen Din-
gen die Warmeleitung im Gewebe, sowie die Warmekonvektion durch den Blutfluss mafigeblich.
Die Beriicksichtigung des Blutflusses fithrt zu einem zusétzlichen Warmeabstransport aus dem
betrachteten Rechenvolumen und dadurch zu einem zus&tzlichen Kiihlungseffekt. Fiir die Be-
trachtung des ,schlimmsten Falls“ kann daher die Gewebedurchblutung vernachléssigt werden.
Die Wérmestrahlung wird im weiteren n&herungsweise durch geeignete Randbedingungen an
den Oberflachen der berechneten Strukturen berticksichtigt.

®Conjugate Orthogonal Conjugate Gradient Sucessive Symmetric Over Relaxation
*Preconditioned Symmetric Biorthognal Conjugate GRadient
>Preconditioned Quasi Minimum Residual
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Abbildung 2.5: Zur Diskretisierung der Biowarmeleitungsgleichung kann dasselbe raumliche Diskre-
tisierungsverfahren verwendet werden, wie bei der Ableitung der Gitter-Maxwell-Gleichungen. Auf
den Knotenpunkten des Gitters G sind analog zur Anordnung der Potentiale die Temperaturwerte T,
innerhalb einer dualen Gitterzelle von Q definiert. Auf den Kanten des Gitters G werden die Kompo-
nenten des Warmestromes In,i definiert, die in die duale Gitterzelle G ein- und ausstromen. Dadurch
wird die Zelle erwarmt oder abgekiihlt. Zusdtzlich zu den Temperaturwerten sind auf den Knoten-
punkten noch die Warmeleistungen Q,, definiert, die zustzliche Warme durch Absorption elektroma-
gnetischer Strahlung, Metabolismus und Blutfluss einbringen oder abfiihren. In jeder Elementarzelle
kénnen anisotrope Materialeigenschaften definiert werden. (Aus Griinden der Ubersichtlichkeit ist
nur ein Teil der schwarzen Pfeile wiedergegeben.)

Grundlage flir den thermischen Energietransport durch Wéirmeleitung und Blutfluss in bio-
logischen Korpergeweben ist die sogenannte Bioheat- Transfer- Equation (Biowirmeleitungsglei-
chung) (Duck, 1990; BowMAN, 1981). Sie besteht aus der Fourierschen Differentialgleichung
der Wirmeleitung, die durch einen zusétzlichen Term fiir die Warmekonvektion durch den Blut-
fluss und einen Term fiir die metabolische Eigenerwirmung erweitert wird:

T =/ =
pegr =V (WT) — wpeppnp (T — Th) + qur + qu (2.33)

mit der Gewebedichte p (kg/m?), der Blutdichte pp (kg/m?), der spezifischen Wirmekapa-
zitdt ¢ (J/(kg-K)), der Temperatur 7" (K), der Bluttemperatur 75 (K), der spezifischen
Wiirmekapazitit des Blutes cp (J/(kg - K)), der Gewebeperfusion wg (m?/(kg - s)), der Wirme-
leitfihigkeit A (W/(m - K)), der durch die elektromagnetischen Felder deponierten Leistungs-
dichte ggp (W/m?3) und der metabolischen Leistungsdichte gy (W/m?).

22



2.4 Ableitung der Gitter-Wiarmeleitungsgleichung

Die linke Seite dieser Gleichung beschreibt den ersten Hauptsatz der Thermodynamik, indem
sich die Temperatur in einem betrachteten Volumen aufgrund von Wéirmediffusion durch die
Randflichen, sowie durch die Konvektion durch den Blutfluss und den Energieeintrag durch
elektromagnetische Verlustleistung und metabolische Eigenerwirmung dndert.

Mit Hilfe des GauBlschen Satzes ldsst sich Gleichung (2.33) auch in integraler Form angeben,
dabei werden zur Vereinfachung der Schreibweise die Parameter, die die Eigenschaften des Blutes
beschreiben zu einer Konstanten zusammengefasst, d. h. kg = wgegppp :

oT - N
/pcs—-dV:f (AVT)-dA-i—/ (—kp (T = Th) + qur + qu) - dV . (2.34)
v oot Y% v

Diese Gleichung stellt nur eine N&herung der tatsidchlichen Vorgénge dar, da kein spezieller Kon-
vektionsterm in der Gleichung enthalten ist, sondern der gesamte Einfluss der Blutstromung
durch Warmequellen und -senken analog zu den absorbierten Leistungsdichten ggr und ¢
dargestellt wird. Anwendungen dieser Gleichung zeigen jedoch, dass die Abweichungen der be-

rechneten Werte im Vergleich zu komplexen Modell der Hyperthermieberechnung gering ist
(CHARNY & LEVIN, 1991).

Um die Ubersichtlichkeit tiber Gleichung (2.34) weiter zu verbessern wird im folgenden der
von der aktuellen Temperatur T unabhingige Term, der die Warmequellen und -senken durch
Energieeintrag, Metabolismus® und Blutfluss darstellt, durch das Symbol Q zusammengefasst
und ersetzt:

Q =kp1s + qur + qu - (2.35)

Damit lasst sich Gleichung (2.34) einfach diskretisieren, wie im niichsten Abschnitt gezeigt wird.

2.4.2 Die Diskretisierung der Biowirmeleitungsgleichung

In Gleichung (2.34) ist das Fouriersche Gesetz enthalten, welches die Wirmestromdichte Jo mit
dem Temperaturgradienten und der Warmeleitfahigkeit verkniipft:

Jy=—AVT . (2.36)

Mit Hilfe dieses Gesetzes ldsst sich die Diskretisierung mit der Finiten-Integrations-Technik
der Biowirmeleitungsgleichung (2.34) demonstrieren. Das Volumenintegral iiber die Tempera-
turinderung in einer dualen Gitterzelle V,, auf der linken Seite von Gleichung (2.34) liisst sich
mit Hilfe von Gleichung (2.36) anhand der Anordnung der thermischen Komponenten nach
Abbildung 2.5 als Summe der einzelnen W&rmestréme J,, in und aus einer beliebigen dualen
Gitterzelle mit der aktuellen Temperatur 7T, und der zusétzlichen Warmeleistung @, in der
n-ten Gitterzelle beschreiben:

aTn
/ PCSE : dv;z = _Jn,l + Jn,2 - Jn,3 - Jn,4 + Jn,5 + Jn,6 + Qn - kB.nTn . (237)

°In der Regel ist der Einfluss des Metabolismus im Vergleich zur Erwirmung durch die Verlustleistung so
gering, dass er vernachlédssigt werden kann. Der Einfluss des Metabolismus bleibt daher unberiicksichtigt.
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Die einzelnen Komponenten J, sind hierbei vorzeichenrichtig zu summieren. Die Umsetzung
in diskrete Gitter-Matrix-Gleichungen erfolgt analog zu Gleichung (2.9) und (2.10). Fiihrt man
diese Umsetzung auf allen dualen Gitterzellen aus, so erhélt man die folgende diskrete Gitter-
Matrix-Gleichung:

i I § ‘
DV-Dm-Et:—S-DA-JWJFDV-(q—DB-t) : (2.38)

Ebenso lasst sich, analog zur Definition des elektrischen Feldes anhand des Gradienten eines
Potentials wie in Gleichung (2.21) gezeigt, das Fouriersche Gesetz als diskrete Gleichung angeben:

jw=D,-ST.¢t. (2.39)

Die Matrizen Dy, D, S und St sind mit denen der bereits abgeleiteten Gitter-Maxwell-
Gleichungen identisch und enthalten Geometrieinformationen (Dv, D) oder stellen Operatoren
dar (S,STt).

Die Matrix Dy, enthélt analog zu den Materialmatrizen D., D, und D, die gemittelten Dich-
ten und spezifischen Warmekapazititen. Gleiches gilt fiir die Matrix D), die die gemittelten
Wairmeleitfihigkeiten enthélt. Die Matrix Dpg ist ebenfalls eine Diagonalmatrix der Ordnung
3n x 3n, die die thermodynamischen Eigenschaftenen des Blutes enthilt.

Setzt man Gleichung (2.39) in Gleichung (2.38) ein, so erhilt man

~ d — ~ ~ ~ — ~ —
Dy D 2t =8 Dy-8T-Da-E+ Dy (4-Dg f) . (2.40)
die auch als Gitter- Wirmeleitungsgleichung bezeichnet wird. Im folgenden werden die Matrizen
Dv und D4, die die geometrischen Informationen enthalten aus Griinden der Ubersichtlichkeit
tiber die Gleichung unterdriickt. Als weitere Vereinfachung wird die Matrix A = S - D, - ST
eingefiihrt und die Matrix Dy, in Gleichung (2.40) auf die rechte Seite gebracht. Es ergibt sich

ady :—Dm—l-A-EJrDm—l-((i—DB-E)
= Dn ! (A+Dp)-t+Dmt-g (2.41)

als Ausgangspunkt flir die Berechnung von transienten Erw&rmungen in Zeitbereich. Voraus-
setzung fiir die Bestimmung der Temperaturverteilung zu einem beliebigen Zeitpunkt ¢ ist die
Festlegung einer anfinglichen Temperaturverteilung (Anfangsbedingung) und die Festlegung der
Randbedingungen.

Die anféingliche Temperaturverteilung ist abhéingig von Art und Struktur des gestellten Problems
und ist im einfachsten Fall eine Konstante, d.h. jeder Knotenpunkt im Rechenvolumen erhilt
die gleiche Anfangstemperatur zu einem bestimmten Zeitpunkt ¢ty und befindet sich so in einem
thermodynamischen Gleichgewicht.

Als rdumliche Randbedingungen existieren drei lineare Arten. Die erste Moglichkeit besteht
darin, dass die Oberfliche des Rechenvolumens auf einer konstanten Temperatur gehalten wird.
Die zweite Randbedingung besteht in der Annahme einer vorgegebenen Wirmestromdichte in
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oder aus dem Rechenvolumen heraus. Als dritte Mdglichkeit ergibt sich dann noch die gemischte
Randbedingung, bei der das betrachtete Rechenvolumen mit einem ihm umgebenden fluiden
Medium im Wéarmeaustausch steht.

Eine weitere Randbedingung ist die Abgabe von Energie als elektromagnetische Strahlung nach
dem Strahlungsgesetz von Stefan und Boltzmann. Diese ist aber nichtlinear und muss angen&hert
werden, um das gesamte Warmeleitungsproblem linear zu belassen. Eine ausfiihrliche Diskussion
hieriiber findet sich bei PINDER (1998).

Bisher wurden alle physikalischen Materialparameter immer als konstant angenommen. Hierbei
gilt aber zu beachten, dass alle Materialparameter — die dielektrischen Parameter ¢,, p, und o,
sowie die thermodynamischen Parameter p, ¢, und A\ — temperaturabhingig sind. Diese Tem-
peraturabhéingigkeit ist in der Regel bei der Lésung numerischer Probleme zu berticksichtigen
und erfordern unter Umstdnden mehrere Neuberechnungen bei der Losung gekoppelter Pro-
bleme. Dies wird in Unterkapitel 2.6 diskutiert. Zun&chst folgt im nichsten Unterkapitel eine
Darstellung von zwei Lésungsverfahren der Biow&rmeleitungsgleichung im Zeitbereich und einer
Rechenzeitverkiirzung durch eine adaptive Steuerung des Zeitschrittes.

2.5 Die Gitter-Wiarmeleitungsgleichung im Zeitbereich

Die Losung des thermodynamischen Problems im Zeitbereich kann auf zwei verschiedene Arten
erfolgen. Zum einen kann mit einem expliziten Verfahren die zeitliche Ableitung der Temperatur
auf der linken Seite von Gleichung (2.41) durch eine N#herung ersetzt werden und die ganze
Gleichung schrittweise mit einem festen Zeitschritt sukzessive berechnet werden. Der maximal
stabile Zeitschritt fiir diese Iterationsmethode ist aber begrenzt, so dass mit einem impliziten
Verfahren unabhingig von einem Stabilitdtskriterium mit gréferen Zeitschritten gearbeitet wer-
den kann. Diese beiden Verfahren werden im folgenden kurz vorgestellt. Der interessierte Leser
findet hierzu ausfiihrliche Darstellungen und Ableitungen bei JALURIA UND TORRANCE (1986).

2.5.1 Explizite Zeitintegration

Bei der expliziten Zeitintegration wird die Zeitachse in vorgegebenen Zeitschritten At abgetastet.
Der aktuelle Zeitschritt wird im folgenden mit n bezeichnet. Dazu wird in Gleichung (2.41) die
Ableitung nach der Zeit durch eine Ndherung ersetzt:

d _f(nt1)—f(n)
Zf(n) = < +O(AY) . (2.42)

Diese N&herung wird auch Vorwdrtsdifferenzquotient genannt. Setzt man in dieser Gleichung
f(n) = t(n) und diese Gleichung wiederum in (2.41) ein und 1ést nach t(n + 1) auf, so ergibt
sich folgende Rekursionsformel fiir die Temperaturverteilung ’E(n +1):

tn+1)=(I-At Dy ' (A+Dg)) t(n)+At-Dp - §(n) . (2.43)

Diese Iteration besteht im wesentlichen aus einer einfachen Matrix-Vektor-Multiplikation. Durch
die Berticksichtigung des Blutflusses ergibt sich eine zusétzliche Subtraktion auf der Hauptdia-
gonalen der Iterationsmatrix, da der Parameter wp, der die Gewebeperfusion beschreibt, stets
positiv ist, wenn die Durchblutung des Gewebes berticksichtigt wird.
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Wird die Durchblutung nicht beriicksichtigt, ergibt sich dieser Parameter zu Null. Die Diago-
nalmatrix Dy verschwindet dann aus der Iterationsmatrix. Weiterhin fallt dann der Term kg1g
aus dem Vektor q(n) heraus, der nach Gleichung (2.35) den temperaturunabhéngigen Teil des
Perfusionsterms darstellt.

Damit das Iterationsverfahren stabil ist, ist es erforderlich, dass die Eigenwerte der Iterations-
matrix

B=I-At-Dy, ! (A+Dg) (2.44)

betragsmiBig kleiner oder gleich eins sind (JALURIA & TORRANCE, 1986), der Spektralradius’
also der Bedingung

o(B)=|Bl2<1 (2.45)

genlgt. Dies fiihrt unmittelbar zu folgendem Stabilitdtskriterium fiir den maximal zulédssigen
stabilen Zeitschritt, das in jeder Gitterzelle erfiillt sein muss:

Atmax < (2.46)

pos- (2—mmm) 1 1\

5) ' (M? Tagt Az2>
Aus dieser Gleichung ist ersichtlich, dass eine Verfeinerung des Gitternetzes sowie die Beriick-
sichtigung des Blutflusses durch das Gewebe den maximal zuléssigen Zeitschritt verkleinert.
Im praktischen Fall ist der Zeitschritt gemé&f dieser Bedingung in jeder Gitterzelle zu berech-
nen und dann fiir die gesamte Iterationsrechnung das kleinste ermittelte Aty,.x zu verwenden.
Bei feinen Gitterauflésungen und menschlichem Gewebe fiihrt dies auf Zeitschrittweiten unter
1 ms Dauer was zu einer sehr hohen Anzahl an Iterationsschritten und damit verbunden einer
langen Rechenzeit fithrt. Dies schrinkt die Anwendbarkeit des expliziten Verfahrens fiir grofie
Simulationszeitrdume ein. Daher muss oft auf das im nichsten Abschnitt besprochene implizite
Verfahren ausgewichen werden.

2.5.2 Implizite Zeitintegration

Aufgrund der Einschrankung beziiglich des maximal zuldssigen Zeitschrittes beim expliziten Ver-
fahren wird im folgenden ein Verfahren vorgestellt, bei dem die Eigenwerte der Iterationsmatrix
unabhéngig von der Wahl der Zeitschrittweite At stets kleiner oder gleich eins sind. Bei diesem
impliziten Verfahren ist daher ein beliebiger Zeitschritt wahlbar. Um dieses Verfahren abzuleiten
wird zunéchst eine alternative Niherung zum Vorwértsdifferenzenquotienten (2.42) betrachtet:

fn+1)—f(n)  dfln+1)

df(n)
At AL

dt ’

+(1+9) 0<y<1. (2.47)
Fiir v = 0 erhdlt man den Vorwirtsdifferenzenquotient, fiir v = 1 den Riickwértsdifferenzenquo-
tient. Hier ist insbesondere der Fall v = 1/2 von Interesse, welches auf ein Verfahren fiihrt, das
in der Literatur als Crank-Nicolson-Verfahren bekannt ist (LICK, 1989).

"Der betragsmiBig grofte Eigenwert einer Matrix B wird auch Spektralradius o(B) genannt.
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Setzt man fiir v = 1/2 die Gitter-Wirmeleitungssgleichung (2.41) in Gleichung (2.47) ein, so
ergibt sich mit Beriicksichtigung des Blutflusses:

-

£(n+1)=[2I+ At Dy ' (A+Dp)] " [2I- At Dy ! (A +Dp)] - E(n)+

At-[21+ At Diy ' (A +Dg)] " Dan - [d(n+ 1) + §(n)] (2.48)

Dieses implizite Rekursionsschema ist komplizierter als das explizite nach Gleichung (2.43).
Neben einer Matrix-Vektor-Multiplikation ist die Matrix 2I4+At Dy, " (A + Dg) zu invertieren,
was gleichbedeutend ist mit dem Losen eines linearen Gleichungssystemes. Der Vorteil dieses
Verfahrens ist, dass die Eigenwerte der Systemmatrix stets kleiner als eins sind, unabhéngig
vom gewdhlten Zeitschritt At. Die Tatsache, dass keine obere Schranke fiir ein stabiles Aty ax
existiert muss allerdings durch einen hdheren numerischen Aufwand erkauft werden, da hierbei
die Systemmatrix invertiert werden muss. Dies ist nicht zwingenderweise bei jedem Rechenschritt
notwendig, sondern kann aus Griinden der Zeitersparnis auch in guter N&herung abhingig von
der Temperaturverinderung im Rechenvolumen gesteuert werden. D. h. die Matrixinversion
wird erst bei Erreichen einer maximalen Temperaturinderung an einem beliebigen Punkt im
Rechenvolumen durchgefiihrt.

Die Matrixinversion wird durch Lésen eines linearen Gleichungssystemes durchgefiihrt welches
das Verfahren der konjugierten Gradienten verwendet (HACKBUSCH, 1990). Der gréflere nume-
rische Aufwand des impliziten Verfahrens lohnt in den Fillen, wo auf eine hiufige Aktualisierung
der invertierten Matrix verzichtet werden kann. Das sind Fille, bei denen zwischen den einzelnen
Zeitschritten nur kleine Temperaturdnderungen (< 1 K) auftreten.

Die Wahl des Zeitschrittes beeinflusst auflerdem die Konvergenzgeschwindigkeit des Iterations-
verfahren zur Matrixinversion. Ein zu grofler Zeitschritt verzogert die Konvergenz so sehr, dass
die Geschwindigkeitsvorteile des impliziten Verfahrens verloren gehen. Die Wahl des geeigneten
Zeitschrittes beruht letzten Endes auf Erfahrungswerten und ist Teil der numerischen Vorun-
tersuchungen in Kapitel 5. Dariiber hinaus ist es méglich, den Zeitschritt wihrend der Iteration
sukzessive zu vergroBern, was eine betrdchtliche Einsparung an Rechenzeit mit sich bringen
kann, wie im nichsten Abschnitt erldutert wird.

2.5.3 Adaptive Zeitschrittsteuerung des thermodynamischen Losers

Die implizite Zeitintegration erlaubt die Wahl eines beliebigen Zeitschrittes im Gegensatz zur
expliziten Zeitintegration. Dadurch ist es méglich auch w&hrend des Simulationslaufes den Zeit-
schritt anzupassen. Die Vorteile den Zeitschritt zu &ndern, liegen bei den besseren Moglichkeiten
zeitliche Abldufe mit weniger Iterationsschritten und damit weniger numerischem Rechenauf-
wand zu simulieren.

Geht man z. B. von einer Quelle mit konstanter Leistung aus, so erreicht die Temperatur-
verteilung nach einiger Zeit einen stationiren Zustand und der Temperaturanstieg im Modell
zeigt einen exponentiellen Verlauf. Die Temperaturerh6hungen sind zu Beginn der Iteration am
groften und werden im weiteren Verlauf immer kleiner.

In diesen Fillen ist es moglich, den Zeitschritt sukzessive zu erhéhen, um so die Anzahl der Itera-
tionsschritte zu verringern. Dazu ist eine adaptive Zeitschrittsteuerung notwendig, die ausgehend
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von der maximalen Temperaturerh6hung an einem Punkt im Rechenvolumen den n#chsten Zeit-
schritt so wihlt, dass der lokale zeitliche Diskretisierungsfehler immer in der gleichen Grofien-
ordnung bleibt.

Ahnliche Vereinfachungen sind auch bei einem gepulsten Hochfrequenzfeld maglich. Je nach dem
Puls-Pausenverhéltnis kann eine gemittelte Dauerleistung angenommen und dann wiederum mit
einem adaptiven Zeitschritt gerechnet werden, wenn auf eine genaue zeitliche Nachbildung der
einzelnen Hochfrequenzpulse in guter Ndherung verzichtet werden kann. In Abschnitt 5.4 finden
sich zu dieser Thematik Ergebnisse von vergleichenden Rechnungen.

PINDER (1998) schligt fiir diese Félle eine einfache Zeitschrittweitensteuerung vor, bei der die
Zeitschrittweite At, in Abh#ngigkeit von der Abnahme der Steigung des Temperaturverlaufes
vergroflert wird. Da die Temperaturzunahme im Rechenvolumen nicht tiberall gleich grof ist, ist
der Gitterpunkt zu wihlen, an dem der Temperaturanstieg im letzten Rechenschritt am gréfiten
ist. Nach PINDER bildet man die Maximumnorm der Temperaturverteilung zwischen aktuellem
Zustand und der Verteilung vor dem letzten Zeitschritt und setzt diese ins Verhéltnis zu der
Maximumnorm, die aus der Temperaturverteilung vor und nach dem ersten Zeitschritt ermittelt
wurde. Der Zeitschritt At,41 ergibt sich dann zu:

£(1) — £(0)|] s
Atyys = 4||() (0)]]

[E(n) — E(n — 1)[|oo

At, . (2.49)

Diese Zeitschrittsteuerung hat zur Folge, dass die maximale Temperaturinderung an den Git-
terknotenpunkten in etwa gleich grof§ bleibt.

Praktischerweise wird die Schrittweitenanpassung wé&hrend der Iteration so durchgefiihrt, dass
nach dem ersten Iterationsschritt mit einer initialen kleinen Zeitschrittweite Aty derjenige Git-
terpunkt im Gitter bestimmt wird, an dem die maximale Temperaturzunahme stattgefunden
hat. Aufgrund der konstanten Warmeleistung bleibt in den meisten Féllen dieser Knoten stets
der Punkt maximaler Temperaturzunahme und kann in guter N&herung dann bei allen folgen-
den Iterationsschritten als Referenzwert fiir die Zeitschrittsteuerung verwendet werden, anstatt
immer wieder neu bestimmt zu werden.

Ein Nachteil von Gleichung (2.49) liegt darin, dass der Zeitschritt At,y1 bei Erreichen des
stationdren Zustandes unendlich grofi wird, weil der Nenner in Gleichung (2.49) gegen Null
geht. Aus diesem Grund ist es notwendig, die maximale Zeitschrittzunahme durch einen Faktor
k > 1,0 zu begrenzen. Damit ergibt sich fiir den Zeitschritt At,;; folgende Bedingung:

1IE(W) = EO)]l
[E(m) =0 = 1)l

At,+1 = min { -At,, k- Atn} . (2.50)

Allerdings ist diese Zeitschrittsteuerung nach PINDER nicht fiir jedes numerische Modell geeignet.
Trotz der Einschrinkung beziiglich der maximal m&glichen Zeitschrittzunahme durch den Faktor
k kann bei langen Simulationszeitriumen der Zeitschritt At, 11 sehr gro werden. Daraus egeben
sich letzten Endes Probleme bei der Matrixinversion in Gleichung (2.48). Je grofler der Zeitschritt
Atpy1 gewdhlt wird, desto mehr erhSht sich die Konditionszahl® der Systemmatrix und desto

$Die Konditionszahl X(A) einer Matrix A ergibt sich aus dem Produkt des jeweils betragsmiBig grofiten
Eigenwertes der Matrix ¢(A) und der invertierten Matrix o(A™") (HackBusch, 1990). Damit ergibt sich fiir die
Konditionszahl x(A) = p(A) - o(A™1).
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mehr Tterationsschritte sind notwendig, diese Matrix zu invertieren. Der Anstieg der notwendigen
Iterationsschritte bei der Matrixinversion kann sogar so grofl werden, dass der Vorteil einer
Verkiirzung der benétigten Rechenzeit komplett verloren geht, der primér durch die adaptive
Zeitschrittvergroflerung erreicht werden sollte.

Aus diesem Grund wird vorgeschlagen, Gleichung (2.50) um einen dritten Term zu erweitern.
Als einfachste Losung bietet sich die Einfiihrung eines absoluten maximalen Zeitschrittes At .x
an, der verhindert, dass der Zeitschritt iiber alle Grenzen steigt. Die Iteration kann somit in
ihrem Verlauf in eine Iteration mit konstantem Zeitschritt iibergehen. Fiir die Zeitschrittweiten-
berechnung gilt daher:

JIED) ~ EO)ll
[En) = = 1)l

At,11 = min { Aty, k- Aty, Atmax} . (2.51)

In der Praxis hat sich gezeigt, dass bei manchen Problemen ein maximaler Zeitschritt von
Atpnax = 400 s noch eine zufriedenstellende Konvergenzgeschwindigkeit der Systemmatrixin-
version des impliziten Verfahrens ergibt und somit einen brauchbaren Kompromiss darstellt,
da selbst bei langen simulierten Zeitrdumen von bis zu 18000 s eine deutliche Reduktion der
bendtigten Iterationsschritte und damit auch der Rechenzeit erzielt werden kann. Fiir den Fak-
tor k ergeben Werte um 1,25 gute Ergebnisse beziiglich einer schnellen Zeitschrittzunahme bei
Anndherung an den stationédren Zustand, ohne die Dauer fiir die Matrixinversion zu sehr zu
erhdhen. In Kapitel 5 tiber numerische Voruntersuchungen wird darauf noch ausfiihrlich einge-
gangen.

2.6 Numerische Kopplung elektrodynamischer und thermody-
namischer Prozesse

Die Kopplung elektrodynamischer und thermodynamischer Prozesse ist von fundamentaler Be-
deutung fiir die Beurteilung der Auswirkung von Therapie- und Diagnosemethoden auf den
menschlichen Kérper. Die Leistungsabsorption aus einem elektromagnetischen Feld fiihrt zu ei-
ner lokalen Erwirmung. Erst die genauere thermodynamische Betrachtung erlaubt Riickschliisse
auf die Risiken fiir den Patienten. Dazu ist es notwendig, das elektrodynamische und das thermo-
dynamische Problem zu koppeln. Ausgehend von den Maxwellschen Gleichungen (2.1-2.4) und
der Biowirmeleitungsgleichung (2.34) ergibt sich ein nichtlineares gekoppeltes System partieller
Differentialgleichungen:

VxE=— % [,u(T) Er] (2.52)

Vx H = % (1) E| +o(D)E (2.53)

V- [E(T) E'} = pe (2.54)
V- [N(T) ﬁ} =0 (2.55)
pcs%—f AV =V (WT) +Q— kT . (2.56)

29



Finite Integrationstechnik

Die einzelnen Gleichungen dieses Gleichungssystemes sind durch die Temperaturabhingigkeit
der dielektrischen Materialparameter &, y und o gekoppelt. Die Verkopplung der Biow&rme-
leitungsgleichung mit den Maxwell-Gleichungen kommt iiber die Gréfle Q zustande, die nach
Gleichung (2.35) auch die Verlustleistung gur enthilt, die sich aus der Losung des elektroma-
gnetischen Problems ergibt.

Eine analytische geschlossene Losung des Systems lasst sich aufgrund der Komplexitits des
Problems im allgemeinen nicht angeben. In der Praxis l4sst sich das gekoppelte Problem néhe-
rungsweise entkoppeln, indem man die dielektrischen Parameter in einem gewissen Temperatur-
bereich als konstant annimmt. Dadurch wird die Losung vereinfacht und das Problem kann in
zwei Teilschritte aufgeteilt werden.

Zunichst wird das elektromagnetische Problem im Frequenzbereich wie in Abschnitt 2.3 be-
schrieben geldst. Die zu untersuchende Struktur wird einem elektromagnetischen Feld ausge-
setzt welches durch eine sinusférmige kontinuierliche Stromdichte i@ erzeugt wird. Mit einem
Losealgorithmus wird das entstehende elektrische Feld E in seinem eingeschwungenen Zustand
berechnet. Damit 14sst sich in jeder Gitterzelle die Verlustleistung bestimmen.

Die mittlere Verlustleistung P, in jeder einzelnen Gitterzelle ist proportional zum Quadrat des
Mittelwertes des elektrischen Feldes FEa,,. Dieser ergibt sich bei sinusférmiger Feldanregung
aus dem Betragsquadrat Ea, = |E | der komplexen Amplitude des elektrischen Feldes durch
Division der Feldamplitude Fa, durch den Faktor v/2:

_ _ 1
P, :/ o(T)Ery, dV = 5/ o(T) E%,. dV . (2.57)
Vrn ‘/"

Der Eingabeparameter gyp in Gleichung (2.56) stellt eine Leistungsdichte dar. Daher ist fiir jedes
Volumenelement des Rechengebietes die berechnete Verlustleistung noch durch das Volumen
AV, der betrachteten Gitterzelle zu dividieren:

qn,HF = AV:,L .

(2.58)

Die gesamte Verlustleistung ergibt sich durch Summation der einzelnen Betréige aller Gitterzel-
len. Bei biologischen Materialien erfolgt die Bestimmung der Verlustleistung auch gemifl Glei-
chung (2.57). Allerdings gestaltet sich die Zusammensetzung der Leitfahigkeit o komplizierter,
so dass dieser Problematik ein eigener Abschnitt 4.2.3 gewidmet ist, bei der die Berechnung der
Verlustleistung nochmals ausfiihrlicher dargestellt wird.

Die so berechnete gemittelte Verlustleistungsdichte dient als Eingabeparameter gyp in Glei-
chung (2.34). Ausgehend von einer Anfangstemperaturverteilung kann im Zeitschrittverfahren
die Erwdrmung im Rechenvolumen ermittelt werden. Dabei ist es mit dem vorgestellten Verfah-
ren auch moglich, gepulste Vorgénge zu simulieren, da die Verlustleistungsdichte gyp w#hrend
der Tteration beliebig gesetzt werden kann. Dies ist mit einem An- und Abschalten der Energie-
quelle vergleichbar.

Im Falle einer nicht vernachlissigharen Anderung der dielektrischen und physikalischen Para-
meter durch die entstehende Erwirmung ist das zeitliche Iterationsverfahren bei Erreichen einer
Grenztemperatur abzubrechen und mit den angepassten dielektrischen Parametern &, y, und
o zundchst wiederum das elektromagnetische Feldproblem zu l6sen. Aus der Losung ergibt sich
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Abbildung 2.6: Das Ablaufschema zeigt das prinzipielle numerische Vorgehen bei der Berechnung
gekoppelter elektromagnetischer und thermodynamischer Probleme. Zunichst wird das elektrodyna-
mische Feldproblem gelést und dabei die Verlustleistung im betrachteten Rechenvolumen ermittelt.
Die Verlustleistung dient als Eingabeparameter fiir den thermodynamischen Algorithmus. Wird eine
vorher definierte Temperaturerhhungim Rechenvolumen iiberschritten, so bricht der thermodynami-
sche Algorithmus ab und die physikalischen Materialparameter werden neu bestimmt, um dann wieder
das elektrodynamische Feldproblem erneut zu I8sen und die Verlustleistung erneut zu bestimmen.
Dies wird fortgefiihrt, bis der Endzeitpunkt erreicht wird.

eine neue Verlustleistungsdichteverteilung mit der die unterbrochene Erwidrmungsberechnung
fortgesetzt werden kann. Dabei gilt es dann auch die iibrigen physikalischen Parameter A, ¢; und
p der aktuellen Temperaturverteilung anzupassen.

Dieser Wechsel zwischen elektromagnetischem und thermodynamischen Loser ist so oft durch-
zufiihren bis die gewiinschte Simulationszeit erreicht ist. Abbildung 2.6 verdeutlicht diese Vor-
gehensweise.

Diese Entkopplung und damit sukzessive Berechnung ist méglich, da in der Regel das elektro-
magnetische Feld bereits eingeschwungen ist, bevor sich signifikante Temperaturverdnderungen
ergeben. Elektromagnetische Einschwingvorgéinge spielen sich im Laufe einiger Periodendau-
ern des anregenden Signals ab. Nimmt man zum Beispiel 100 Perioden bei einer Frequenz von
100 MHz an, so ergibt sich eine Einschwingdauer von 1 us, die weit unter der Zeitdauer fiir eine
Anderung der Temperaturverteilung liegt.

Zur Verdeutlichung kann der maximal zuldssige Zeitschritt (2.46) als Zeitkonstante fiir das ther-
modynamische Iterationsverfahren fiir einige Materialien und Gitterschrittweiten berechnet wer-
den und mit dem Courant-Kriterium verglichen werden. Dieses Kriterium gibt den maximalen
stabilen Zeitschritt bei der transienten Berechnung elektromagnetischer Felder mit den Max-
wellschen Gleichungen im Zeitbereich an und ist ein MaB fiir die Geschwindigkeit, mit der die
Felddnderungen ablaufen (THOMA & WEILAND, 1998):

=

1 1 1 h
Atmax S VEOErHO My * (A$2 + AyQ + A22> s (259)
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Material Almax,th Atmaxel Atmax,th Atmax,el
(Az=Ay=Az=1mm) (Az=Ay=Az=10mm)
Muskel 1,261s 1,637-107"s 126,15 1,637 1010
Fett 1,823s 7,120-107'2s  182,3 s 7,120- 10711

Nervengewebe 1,270s 1,430-107''s 127,0s 1,430 - 10710

Tabelle 2.1: Vergleich der maximalen stabilen Zeitschrittweiten bei der Lésung elektrodynamischer
und thermodynamischer Probleme im Zeitbereich. Angeben sind die Zeitschrittweiten berechnet nach
der thermodynamischen Stabilitatsbedingung (2.46) Atmayxtnh und dem Courant-Kriterium (2.59)
Atmaxel flir zwei verschiedene Gitterschrittweiten eines dquidistanten Gitters und drei verschiedene
biologische Materialien. Bei der Berechnung wurden die dielektrischen Parameter bei einer Feld-
frequenz von 63,9 MHz nach Tabelle B.3 verwendet. Die thermodynamischen Parameter wurden
entsprechend Tabelle B.1 eingesetzt. Fiir alle Parameter wurde eine Temperatur von 37° C ange-
nommen.

Tabelle 2.1 vergleicht die maximalen stabilen Zeitschritte bei der Lésung eines thermodynami-
schen und eines elektrodynamischen Problems bei zwei Gitterschrittweiten eines dquidistanten
Gitters und drei verschiedenen biologischen Materialien. Die Gitterschrittweite wurde in Anleh-
nung an die in dieser Arbeit vorgestellten numerischen Modelle gew&hlt. der Vergleich zeigt, dass
die thermodynamischen Zeitschrittweiten Aty ax¢nh in jedem Fall um einige Gréflenordnungen
tiber den elektromagnetischen Schrittweiten Aty,.x o liegen. Fiir alle im folgenden untersuchten
Modelle gilt Atpaxel <K Atpaxith, 5o dass das Berechnungsschema aus Abbildung 2.6 als gute
N&herung zur Lésung des gekoppelten Problems verwendet werden kann.

In den Féllen, in denen sich durch die Absorption von Energie aus dem Hochfrequenzfeld nur
kleine Temperaturerhdhungen ergeben, kann in guter Naherung auf eine Wiederholung des Léose-
vorgangs des elektromagnetischen Feldproblems verzichtet werden, da sich bei kleinen Tem-
peraturverinderungen die dielektrischen Parameter nur unwesentlich &ndern. Bei biologischen
Materialien ist auch eine Temperaturabh&ngigkeit der dielektrischen Parameter zu beobachten,
die berticksichtigt werden muss, sofern ihre Gréflenordnung bekannt ist. Dies wird eingehend
in Abschnitt 3.4.4 diskutiert. Die maximale TemperaturerhShung, ab der eine erneute Ldsung
des elektromagnetischen Feldproblems notwendig wird, ist immer im Einzelfall festzulegen. Da-
bei ist auch zunichst abzuschitzen, ob der zusitzliche Rechenzeitaufwand in einem sinnvollen
Verhéltnis zu einer Verbesserung der numerischen Losung steht.

2.7 Das Programmpaket MAFIA

2.7.1 Einfithrung

Das Programmpaket MAFIA ist ein CAD-Programm zur Lésung elektromagnetischer und ther-
modynamischer Feldprobleme, welches die komplette zwei- und dreidimensionale Modellierung
beliebiger geometrischer Strukturen in kartesischen Koordinaten oder Zylinderkoordinaten er-
laubt. Der Kern des modularen Programmpaketes sind die verschiedenen Lo&sealgorithmen, die
Feldprobleme aus einer groflen Palette von Problemstellungen mit Hilfe der Finiten-Integrations-
Technik losen (siehe Abschnitt 2.2). Dazu gehdren unter anderem elektro- und magnetostatische
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Probleme, Probleme mit harmonischer Feldanregung im Frequenzbereich, die Berechnung tran-
sienter Vorginge im Zeitbereich oder die Losung thermodynamischer Feldprobleme. Die Loseal-
gorithmen werden durch Programmteile zur Vorverarbeitung und Nachbearbeitung der Modelle
und numerischen Losungen ergénzt (sieche Abbildung 2.7). Im folgenden werden die einzelnen
Module des Programmpaketes MAFIA in der Version 4.106 benannt und kurz beschrieben. Am
Ende finden sich Literaturhinweise mit weiterfiihrenden Darstellungen.

2.7.2 Der modulare Aufbau von MAFIA

An erster Stelle steht die Generierung eines Gitternetzes im Netzgenerator M. Mit Hilfe geome-
trischer Primitive (Kreis, Quadrat, Kugel, Wiirfel, etc.) lassen sich zunichst fast beliebig kom-
plexe, zwei- oder dreidimensionale Strukturen definieren. Den einzelnen Primitiven wird dann
eine Materialnummer zugeordnet. Die physikalischen Materialeigenschaften werden an dieser
Stelle aber noch nicht gesetzt. Dies geschieht in den einzelnen Lésermodulen.

Im néchsten Schritt wird das betrachtete Volumen mit einem kartesischen oder zylindrischen
zwei- oder dreidimensionalen Gitter iiberzogen. Dabei werden die vorher definierten geometri-
schen Primitive durch eine oder mehrere Gitterzellen mit homogener Materialfiillung approxi-
miert. Dieser Vorgang wird auch geometrische Diskretisierung genannt. Hierbei kommt es ins-
besondere bei runden Primitiven durch die Approximation mit einem rechtwinkligen Gitternetz
zu einem rdumlichen Diskretisierungsfehler. Dieser kann durch die Verwendung von nur partiell
gefiillten Gitterzellen (Dreieckszellen) verringert, aber nicht ganz vermieden werden.

Die GittergroBen und -abstinde konnen hierbei im Rahmen der zur Verfligung stehenden Spei-
cherkapazitit des Rechners frei gewdhlt werden. Die Gesamtzahl der Gitterknoten ergibt sich
dann aus der Multiplikation der einzelnen Gitterkanten in jeder Raumrichtung. Der Speicher-
bedarf pro Knotenpunkt ist abhingig vom verwendeten Losealgorithmus und spielt bei der
Gittergenerierung nur eine untergeordnete Rolle. Allerdings sollte an dieser Stelle schon bei der
Dimensionierung des Gitters die spétere Speicherauslastung bedacht werden, wenn es um die
Gesamtanzahl der Gitterknoten geht. Hier ist oft eine Gratwanderung zwischen Speicherbedarf
und Rechenzeit, sowie geometrischer Auflésung und damit auch réumlicher Diskretisierungsfeh-
ler nétig.

In das erstellte Gitter kdnnen dann zusétzlich direkt komplexe geometrische Datenséitze in-
tegriert werden, wie z. B. Modelle des menschlichen Korpers, die sich nicht aus Primitiven
generieren lassen. Weiterhin erlaubt das Programmpaket MAFIA die Integration von Fiden
— sogenannte Filamente — in das Gitter, die als ideale elektrische Leiter eine leitende Verbin-
dung zwischen zwei Volumenbereichen erméglichen, als Tréger eines anregenden Stromes oder
als Integrationspfade fiir die Nachbearbeitung dienen konnen.

Der néchste Schritt besteht in der Auswahl eines fiir das Problem geeigneten Losermoduls. In
den vorhergehenden Abschnitten wurden die Losung der Maxwellschen Gleichungen fiir harmo-
nische sinusformige Feldanregungen im Frequenzbereich (siehe Abschnitt 2.3) und die Lésung der
Biowdrmetransportgleichung im Zeitbereich (siehe Abschnitt 2.5) vorgestellt. Die zugehdrigen
Algorithmen wurden in die Module W3 und H3 integriert. Neben diesen gibt es noch Module
zur Losung der Maxwell-Gleichungen und Berechnung von transienten Vorgingen im Zeitbereich
T2, T3 und TL3, sowie zur Losung elektrostatischer Probleme S und Eigenwertprobleme E.

In jedem Lo&sermodul kénnen den Materialnummern der einzelnen Gitterzellen physikalische
Materialeigenschaften zugewiesen werden. Diese Eigenschaften kénnen sich in den einzelnen
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Modellerstellung Losealgorithmus Auswertung
W3
M » | H3 |« » P
etc.

Abbildung 2.7: Grundlegender Aufbau der Feldrechnungssoftware MAFIA. Zunachst wird im Netz-
generator M ein numerisches Modell erstellt. Als Eingabedaten kdnnen beliebige geometrische Formen
oder auch komplexe Modelldatensdtze, z. B. menschliche Kérpermodelle, dienen. In der so generier-
ten Gitterstruktur wird eine Feldanregung definiert und dann die resultierende Feldverteilung mit
einem geeigneten Losealgorithmus berechnet. Neben den aufgefiihrten Modulen stehen noch zahl-
reiche andere Algorithmen fiir die verschiedensten Problemstellungen zur Verfligung. Mit Hilfe des
Postprozessors P ist eine Nachbearbeitung und Visualisierung der numerischen Ergebnisse méglich.
Die Farbbilder zeigen Beispiele fiir ein komplexes Korpermodell vor der Diskretisierung (links), ein
diskretisiertes Rechenvolumen mit Kérpermodell und Anregungsspulen (mitte) und ein visualisiertes
numerisches Beispielergebnis (rechts).

Raumrichtungen unterscheiden. Somit sind auch Anisotropien moglich. Weiterhin kénnen dem
jeweiligen Problem angepasste Randbedingungen fiir den numerischen Abschluss der Auflen-
seiten des Rechenvolumens angegeben werden. Diese sind z. B. elektrische oder magnetische
Randbedingungen, um ideal elektrisch oder magnetisch leitende R&nder anzunehmen, oder of-
fene Randbedingungen, die einen reflexionsfreien Anschluss des Rechenvolumens an den freien
Raum simulieren. Daneben besteht in den einzelnen Modulen die Auswahl verschiedener Léseal-
gorithmen oder Gleichungstypen, sowie zahlreicher weiterer Parameter, die im gewissen Rahmen
eine Anpassung der Loser auf das gestellte Problem zulassen.

Zur Nachbereitung und Visualisierung der mit den Lésermodulen berechneten Feldverteilungen
steht das Postprozessormodul P zur Verfiigung. Es erlaubt neben zahlreichen Méglichkeiten der
graphischen Auswertung auch die Berechnung zusétzlicher Feldkomponenten (z. B. Poynting-
Vektor) und die Berechnung der Verlustleistung.

Der Vorteil des modularen Aufbaus des Programmpaketes MAFIA liegt in der Moglichkeit,
einzelne Module beliebig kombinieren zu konnen, da jeder Losealgorithmus eines Moduls das
gleiche Gitternetz verwendet, welches zuvor mit dem Netzgenerator M erstellt wurde. Dadurch
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ist die in Abschnitt 2.6 beschriebene Kopplung elektromagnetischer und thermodynamischer
Vorginge durch ein abwechselndes Aufrufen der Module W3 und H3 moglich. Da dies fiir
beliebige Modulkombinationen gilt, lassen sich so auch noch komplexere Simulationsvorgéinge
aufbauen. Abbildung 2.7 verdeutlicht den modularen Aufbau des Programmpaketes.

Eine weitere Moglichkeit zur Steuerung des numerischen Simulationsvorganges besteht in der
Nutzung der integrierten Skriptsprache des Programmpaketes. Dieses sogenannte MAFIA-
Basic erlaubt die automatische Ablaufsteuerung des Simulationsprozesses und so die skript-
gesteuerte Durchfiihrung komplexer Simulationsaufgaben.

Weitergehende Darstellungen findet man in (BECKER ET AL., 1994; KRAWCZYK & WEILAND,
1988; WEILAND ET AL., 1996). Hinweise zu den Parametern und Einstellmoglichkeiten des
Frequenzbereichslosers W3 und des thermodynamischen Loésers H3 finden sich in der MAFTA-
Dokumentation (MAFTA, 2000B; MAFTA, 20004). Spezielle Fragestellungen beziiglich der
Parametereinstellungen und Lésealgorithmenwahl dieser beiden Module werden in den folgenden
Abschnitten 5.2 und 5.3 diskutiert.

2.8 Zusammenfassung

In diesem Kapitel wurde zunéchst die Finite-Integrations-Technik vorgestellt und ihre Anwen-
dung bei der Losung der Maxwell-Gleichungen im Frequenzbereich und der Biowirmeleitungs-
gleichung im Zeitbereich aufgezeigt. In beiden Féllen ist zunéchst eine rAumliche Diskretisierung
der zu untersuchenden Struktur notwendig. Hierbei wird die Struktur durch ein dreidimensiona-
les kartesisches Gitternetz mit variablen Gitterabstdnden angen&hert. Auf diesem Gitter werden
im Fall der Maxwell-Gleichungen auf den Kanten und senkrecht auf den Oberflichen der Git-
terzellen die elementaren Feldgréflen definiert und so eine diskrete Reprisentation der Maxwell-
Gleichungen erméglicht. Durch Zusammenfassen aller Komponenten der Feldgrofien ergeben sich
die Gitter-Maxwell-Gleichungen als Matrixgleichungen. Ahnlich wird mit den Materialgleichun-
gen verfahren.

Im Frequenzbereich kann aus der ersten und zweiten Gitter-Maxwell-Gleichung die diskrete Curl-
Curl-Eigenwertgleichung abgeleitet werden, die den Zusammenhang zwischen einer anregenden
Stromdichte und dem daraus resultierenden elektrischen Feld beschreibt. Mit Hilfe verschiedener
numerischer Methoden kann dieses lineare Gleichungssystem gelést werden und Néherungslosun-
gen fiir die elektrische Feldverteilung ermittelt werden.

Im Zeitbereich wird die Biow#rmeleitungsgleichung geldst, die in guter Naherung Warmelei-
tungsprozesse im menschlichen Ko&rper, u. a. auch den Blutfluss, erfasst. Zur Losung dieser
Gleichung wurde ein explizites und ein implizites Verfahren vorgestellt. Im Gegensatz zum re-
striktiven Stabilitdtskriterium flir den Zeitschritt des expliziten Verfahrens erlaubt das implizite
Verfahren die Wahl eines beliebigen Zeitschrittes. Dies kann fiir eine adaptive Zeitschrittwei-
tensteuerung ausgenutzt werden, um die Rechenzeit bei thermodynamischen Problemen mit
konstanter Wirmeleistung deutlich zu verkiirzen. Einschrinkungen dieses Verfahrens wurden
vorgestellt und Lésungsansitze aufgezeigt.

Abschlielend wurde das Programmpaket MAFIA beschrieben, mit dem die numerischen Pro-
bleme in dieser Arbeit geldst wurden. Sein modularer Aufbau erlaubt die Kopplung mehrerer
numerischer Prozesse hintereinander. Damit ist die Berechnung gekoppelter elektrodynamischer
und thermodynamischer Probleme mdoglich.
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Kapitel 3

Dielektrische Eigenschaften von
Korpergewebe

3.1 Einfithrung

Die Berechnung elektromagnetischer und thermischer Felder in Modellen des menschlichen
Korpers ist nur mit Kenntnis einiger physikalischer Eigenschaften der jeweiligen Gewebetypen
moglich. Einige dieser Grofen sind frequenzabhéngig. Dazu zdhlen z. B. die Leitfdhigkeit und
die Permittivitat, die auch die dielektrischen Eigenschaften genannt werden . Andere Parame-
ter, wie die Dichte, die spezifische Warmekapazitit oder die Warmeleitfahigkeit sind frequenzu-
nabhingig.

Die frequenzabhingigen dielektrischen Eigenschaften geben unter anderem an, wie gut ein Ge-
webetyp bei der jeweilig betrachteten Frequenz leitet und damit verbunden, wie grof3 z. B. die
dielektrischen Verluste im Gewebe sind. Somit beeinflussen diese Eigenschaften direkt den Ver-
lauf und die Stdrke des resultierenden elektrischen Feldes im Inneren des Korpermodells bei
einer Wechselwirkung mit einem #ufleren angelegten elektromagnetischen Wechselfeld. Vor der
numerischen Berechnung sind daher zunéchst die entsprechenden dielektrischen Eigenschaften
der in den Modellen verwendeten Gewebetypen zu ermitteln. Dazu stehen Tabellen mit ex-
perimentellen Daten sowie analytische mathematische Modelle zur Verfiigung, die auf diesen
Messdaten aufbauen und eine Integration von Algorithmen zur ndherungsweisen Bestimmung
dieser Parameter in bestehende Software erlauben.

Inhalt dieses Kapitels ist zunichst ein kurzer historischer Uberblick mit wichtigen Arbeiten
zur Bestimmung der dielektrischen Eigenschaften von biologischem Gewebe. Danach wird auf
die Ableitung wichtiger physikalischer Gréflen bei sinusférmiger Feldanregung in Bezug auf die
dielektrischen Parameter und ihre Zusammenhinge eingegangen, gefolgt von einer Defintion
und Erlduterung der zum Versténdnis wichtigen Begriffe Polarisation und Dispersion. Dies wird
erginzt durch eine Darstellung der verschiedenen Dispersiontypen und ihrer méglichen Ursachen
auf zelluldrer Ebene. Im Anschluss daran werden die physikalischen Gleichungen angegeben, mit
denen sich das Dispersionsverhalten von menschlichem Gewebe anndhernd beschreiben lisst.
Dies fiihrt dann schliellich zur Ableitung der Cole-Cole-Gleichung und ihrer Anwendung in der
Praxis nach GABRIEL ET AL. (1996¢). Eine Diskussion dieser von GABRIEL ET AL. abgeleite-
ten Cole-Cole-Gleichung und der festgelegten Gleichungsparameter ergénzt die Darstellung. Das
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Kapitel wird mit einigen Bemerkungen iiber die Temperaturabhingigkeit der dielektrischen Pa-
rameter von biologischem Gewebe abgeschlossen, da dies bei numerischen thermodynamischen
Betrachtungen eine Rolle spielen kann.

3.2 Historischer Uberblick

Die Bestimmung der dielektrischen Eigenschaften von Koérpergewebe ist fiir die medizintechni-
sche Forschung von grofier Bedeutung. Dariiber hinaus ist die Kenntnis dieser frequenzabhingi-
gen Groflen fir die Durchfiihrung numerischer Simulationen mit Modellen des menschlichen
Korpers unbedingt notwendig. In einem Zeitraum von inzwischen mehr als hundert Jahren sind
daher zahlreiche Forschungsarbeiten zu diesem Thema erschienen; einige besonders interessante
von ihnen seien an dieser Stelle erwihnt.

Bereits in der ersten Hélfte des neunzehnten Jahrhunderts wurden von dem Berliner Physiolo-
gen Johannes Peter Miiller in Arbeiten {iber die anisotrope Leitfahigkeit von Muskelgewebe, die
kapazitiven Eigenschaften von Korpergewebe und dartiber hinaus auch Erkenntnisse tiber Im-
pedanzverinderungen von Muskelgewebe durch Erregung berichtet (PALKO & GALWAS, 1999).

Im Jahre 1910 wurde von Rudolf Hober, Professor fiir Physiologie an der Universitidt in Kiel,
zum ersten Mal die kapazitive Impedanz von roten Blutkérperchen gemessen. Aufgrund seiner
Erkenntnisse schloss er darauf, dass die Blutkdérperchen im Prinzip aus einer diinnen dielektri-
schen Umbhiillung bestehen, die einen salzwasserdhnlichen Elektrolyten umschlielen. Im Rahmen
seiner Untersuchungen entdeckte er auch die Frequenzabhéngigkeit der Leitfdhigkeit des Blutes
(HOBER, 1910), die in spéteren Jahren von SCHWAN (1957) klassifiziert wurde.

Einige Jahre spiter konnte Hugo Fricke die ersten Werte fiir die Kapazitit der Zellmembran von
roten Blutkdrperchen angeben (FRICKE, 1925). In seiner Arbeit aus dem Jahre 1932 beschreibt
Hugo Fricke den Mechanismus der elektrolytischen Polarisation, den er fiir die Ver&nderung
der dielektrischen Eigenschaften von Zellen und Gewebe im Hochfrequenzbereich verantwortlich
machte (FRICKE, 1932).

Parallel zu diesen Arbeiten wurde die Anwendung elektrischer Felder fiir die Diathermie und an-
dere Verfahren erforscht. Fundamentale Arbeiten hierzu wurden von Jaques-Arsene d’Arsonval,
einem franzosischen Physiologen, am Anfang des neunzehnten Jahrhunderts geleistet. Nach dem
zweiten Weltkrieg entwickelte sich dieses Feld in Richtung der Hyperthermie und Thermothera-
pie (PALKO & GALwAS, 1999)

Durch den Fortschritt der Forschungen iiber die dielektrischen Kigenschaften von biologischen
Geweben konnten eine Vielzahl an weiteren therapeutischen und diagnostischen Verfahren ent-
wickelt werden. Ausgehend von elementaren Arbeiten wie z. B. von SCHWAN (1957) wurden
dielektrische Parameter in umfangreichen experimentellen Untersuchungen von verschiedensten
biologischen Geweben in einem grofien Frequenzbereich ermittelt und veréffentlicht. Neben der
umfassenden Sammlung genereller physikalischer Eigenschaften von Ké&rpergewebe von DUCK
(1990), bieten die Ubersichtsartikel von PETHIG (1984) und GABRIEL ET AL. (1996A) eine der
umfangreichsten Zusammenstellungen experimentell ermittelter dielektrischer Parameter von
menschlichem Korpergewebe.

Dariiber hinaus wurden neben experimentellen Studien auch zahlreiche Modelle zum Verstand-
nis der Frequenzabhéngigkeit dielektrischer Gewebeparameter erstellt. Experimentelle Untersu-
chungen zeigten, dass die dielektrischen Parameter sich in gewissen Frequenzintervallen relativ
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konstant verhalten, wohingegen in anderen Frequenzbereichen sich starke Anderungen in den
Messwerten ergaben. Fiir die Frequenzabhingigkeit der dielektrischen Parameter, die mit dem
Begrift Dispersion bezeichnet wird, wurde von K. S. Cole und R. H. Cole im Jahr 1941 eine
Gleichung eingefiihrt, mit der sich die Beobachtungen mathematisch beschreiben liefen (COLE

& CoLE, 1941).

Diese Gleichung wurde von GABRIEL ET AL. (1996C) aufgegriffen und die darin enthaltenen
Parameter anhand der vorhandenen experimentellen Daten aus GABRIEL ET AL. (1996A) und
GABRIEL ET AL. (1996B) angepasst und parametrisiert, so dass heute fiir eine grofle Anzahl
an verschiedenen Koérpergeweben in einem groflen Frequenzbereich die dielektrischen Parameter
anhand der angepassten Cole-Cole-Gleichungen angegeben werden konnen, die im tibernéchsten
Abschnitt hergeleitet werden.

Bei Betrachtung der dielektrischen Parameter wird immer von lebendem Gewebe ausgegangen,
denn jedes Gewebe zeigt nach dem biologischen Tod des Organismus zeitabhéngige Verdnderun-
gen in seinem dielektrischen Verhalten. Auf diese Eigenschaften soll hier nicht n&her eingegangen
werden, da in den numerischen Modellen nur lebendiges Gewebe betrachtet wird. Daher sei an
dieser Stelle fiir weitere Erlduterungen auf die Arbeit von DUCK (1990) verwiesen.

3.3 Physikalische Groflen und Effekte

3.3.1 Komplexe Permittivitit und Leitfahigkeit

Die Wechselwirkung eines elektrischen Stromes mit biologischem Gewebe wird in erster Linie
durch die Gewebebestandteile bestimmt, welche wiederum durch den Stromfluss beeinflusst wer-
den koénnen. Die beobachtbaren elektrischen Eigenschaften sind daher Ausdruck der Struktur
und Zusammensetzung dieser Gewebe. Da biologische Gewebe in der Regel nicht magnetisch
sind, beeinflussen die elektrischen Stréome die Zellbestandteile, die entweder eine elektrische La-
dung tragen oder ein elektrisches Dipolmoment besitzen. Als Ladungstriger kommen in erster
Linie Ionen in den intra- und extrazelluldren Fliissigkeiten in Frage. Den grofiten Beitrag zu den
Dipolmomenten liefern die polaren Wassermolekiile in diesen Fliissigkeiten und die Lipidschich-
ten der Zellmembranen. Die beweglichen Ionen in den Fliissigkeiten fithren auf der einen Seite zu
einer messbaren Leitfdhigkeit. Auf der anderen Seite erzeugen die elektrischen Dipole verschie-
dene ebenfalls messbare dielektrische Relaxationsphdnomene. Obwohl das Adjektiv dielektrisch
fiir Stoffe Verwendung findet, die in der Lage sind elektrostatische Energie zu speichern, wird es
auch fiir biologische Gewebe verwendet, die in einem elektrischen Feld polarisierbar sind.

Die Bestimmung dielektrischer Parameter biologischer Gewebe erfolgt bei Frequenzen unter ei-
nigen Megahertz in kleinen Messzellen mit einfacher Geometrie in Vierelektrodenmesstechnik.
Uber zwei Elektroden wird ein konstanter Wechselstrom in das Gewebe eingeprigt. An den
beiden anderen Elektroden wird der resultierende Spannungsabfall gemessen. Unter Annahme
eines elektrischen Ersatzschaltbildes lassen sich aus der gemessenen Spannungsamplitude und
der Phasenverschiebung zwischen Strom und Spannung die Groflen fiir die Kapazititen und
Widersténde des Ersatzschaltbildes ermitteln. Als einfaches Ersatzschaltbild dient z. B. eine
Parallelschaltung eines Kondensators und eines Widerstandes. Mit Hilfe der geometrischen Ab-
messungen der Messzelle kénnen dann unter Annahme einer einfachen Plattenkondensator- und
Widerstandsandsanorndung die Leitfahigkeit und Permittivitit bestimmt werden. Bei Frequen-
zen im oberen Megahertzbereich werden Koaxialmessképfe verwendet, die direkt mit der Probe
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in Kontakt gebracht werden. Die dielektrischen Parameter werden bei diesem Messverfahren
tiber die Reflexionseigenschaften der Gewebeproben bestimmt. Ausfiihrliche Darstellungen hier-
zu finden sich bei PALKO UND GALWAS (1999) und GABRIEL ET AL. (1996B). Eine numerische
Betrachtung zu dieser Thematik, die Themen behandelt, die nicht in diesem Kapitel abgedeckt
werden, findet sich bei GOLOMBECK ET AL. (2002B).

Durch die Analogie zwischen verlustbehafteten Dielektrika und biologischem Gewebe lassen
sich die dielektrischen Eigenschaften von Gewebe durch die relative Permittivitdt ¢, und die
Leitfahigkeit o beschreiben. Bei zeitharmonischer Feldanregung werden aber zweckméBigerweise
die komplexe relative Permittivitit ¢ (w) und die komplexe Leitfihigkeit o(w) als frequenz-
abhéngige Groflen eingefiihrt!. Das Verstindnis der Komponenten der komplexen Gréfien wird
hierbei gemifl der gédngigen Literatur entsprechend beschrieben (RIGAUD ET AL., 1996; PALKO
& GALWAS, 1999; GABRIEL ET AL., 1996A; PETHIG, 1991; DURNEY & CHRISTENSEN, 2000).

Die komplexe relative Permittivitit g, (w) ist definiert als:

g, (w) =el(w) — jell (w) . (3.1)

Der Realteil &/ (w) beschreibt hierbei die Fihigkeit des Gewebes, elektrische Feldenergie zu spei-
chern. Der Imaginirteil ¢!/ (w) wird als Verlustfaktor bezeichnet und gibt neben den Jouleschen
Verlusten durch den elektrischen Stromfluss einen zusétzlichen Energieverlust an, der durch die
Reibung der elektrischen Dipole bei ihren Rotationsbewegungen verursacht wird, die durch das
einstrahlende elektromagnetische Wechselfeld entstehen. Das Verhiltnis e} (w)/el (w) wird auch
als Verlustwinkel tan § bezeichnet.

Analog zur komplexen Permittivitit kann eine komplexe Leitfihigkeit eingefiihrt werden?
(Duck, 1990):

o(w) =o' (w) +jo"(w) . (3.2)

Beide Gréflen kénnen &quivalent zur Beschreibung der dielektrischen Gewebeparameter verwen-
det werden. Die Gesamtstromdichte ig durch ein beliebiges biologisches Gewebe mit endlicher
Leitfahigkeit wird bei zeitharmonischer Feldanregung durch folgenden Zusammenhang zwischen
komplexer Leitfihigkeit o(w) und komplexem elektrischen Feld E ausgedriickt:

—

|tz

=co(w) - (3.3)

[¢5°)

Der Realteil ¢’(w) der komplexen Leitfihigkeit wird der sogenannten Leitungsstromdichte zuge-
ordnet. Diese Stromdichte entsteht zum einen durch eine statische frequenzunabhéngige Ionen-
leitfadhigkeit o, des Gewebes und eine frequenzabhéngige Wechselstromleitfdhigkeit verursacht
durch den Verlustfaktor &/(w). Die Leitungsstromdichte ist verantwortlich fiir die Jouleschen
Verluste und damit die Erwdrmung des Gewebes. Der Realteil der komplexen Leitfahigkeit kann
daher auch geschrieben werden als:

o' (w) = o5 + wegey (w) . (3.4)

!Komplexe Grofen werden in dieser Arbeit stets durch einen Unterstrich gekennzeichnet
*Hierbei ist die Vorzeichenkonvention im Vergleich zu Gleichung (3.1) zu beachten.
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3.3 Physikalische Groflien und Effekte

Abbildung 3.1: Relative Permittivitat (griine Kur- 700
ve) und effektive Leitfahigkeit (rote Kurve) einer
Kochsalzlosung (0,47% NaCl) bei einer Tempera-
tur von 37°C. Im Bereich von einigen Gigahertz
kénnen die Wassermolekiile einem duBeren elektri-

schen Feld nicht mehr folgen und die Permittivitat 200 Teff
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Der Imaginiirteil o”(w) der komplexen Leitfihigkeit gibt die sogenannte Verschiebungsstrom-
dichte im Gewebe an. Sie verursacht einen reinen Blindleistungsanteil und triagt daher nicht zur
Erwiarmung des Gewebes bei. Fiir den Imagnidrteil gilt:

0" (w) = wepel(w) . (3.5)

Als Zusammenhang zwischen komplexer Leitfahigkeit und komplexer relativer Permittivitit er-
gibt sich dann:

o(w) = o5 + jwepe, (w) - (3.6)

Sammlungen mit experimentellen Messdaten von Kérpergewebe, wie z. B. die von GABRIEL
ET AL. (1996A), geben oftmals nur die relative Permittivitit ¢, und die Leitfahigkeit ¢ an. In
der Regel entspricht die Angabe fiir die relative Permittivitét gerade dem Realteil der komplexen
relativen Permittivitit eL(w) . Da es keine festen Konventionen gibt, ist die Wahl der Namen fiir
die einzelnen Groflen in der Literatur uneinheitlich. So ist z. B. oftmals auch der Gebrauch einer
effektiven Leitfihigkeit o (w) {iblich, die gleich dem in Gleichung (3.4) definierten Realteil o’ (w)
der komplexen Leitfihigkeit o(w) ist, der zus#tzlich die statische Tonenleitfihigkeit oy enthilt.
Die statische Tonenleitfihigkeit o5 wird bei Messungen oft nicht getrennt erfasst und wird daher
nicht einzeln angegeben. Im nichsten Abschnitt wird die Frequenzabhingigkeit der relativen
Permittivitdat und der Leitfdhigkeit diskutiert.

3.3.2 Polarisation und Dispersion

Um die Effekte zu verstehen, die sich bei einer Wechselwirkung eines elektromagnetischen Feldes
mit Gewebe ergeben, muss zunéchst der Begriff der Polarisation eingefiihrt werden. Alle dielek-
trischen Phénomene sind dabei direkt mit einer Polarisation eines Materials unter dem FEinfluss
eines duferen elektrischen Feldes verkniipft. Manche atomare Teilchen besitzen aufgrund ih-
rer Struktur auch im feldfreien Raum ein Dipolmoment (z. B. Wassermolekiile). Da aber die
Wirmebewegung die Richtungen einer grofien Anzahl dieser Dipole beliebig im Raum verteilt,
besteht ohne angelegtes elektrisches Feld keine dielektrische Polarisation.

Der Polarisationsmechanismus, der in Gewebe im Hochfrequenz- und Mikrowellenbereich do-
minant ist, ist die Orientierungspolarisation. Bei diesem Polarisationmechanismus richten sich

41



Dielektrische Eigenschaften von Kérpergewebe

Molekiile mit einem elektrischen Dipolmoment verursacht durch die Molekiilstruktur teilweise
in einem angelegten #uferen elektrischen Feld zu diesem entgegengesetzt aus®. Diese Einstellung
bendtigt in einem viskosen Medium eine gewisse Zeit.

Bei einem zeitharmonischen #uferen elektrischen Feld versuchen die Dipole der Anderung des
dufleren Feldes zu folgen. Bei ansteigender Frequenz zeigen sich im Verlauf der dielektrischen
Parameter Bereiche, in denen die Werte eine starke Verinderung erfahren. Die Anderung der
dielektrischen Parameter wird auch Dispersion genannt.

Wenn die Frequenz des dufleren Feldes kontinuierlich erh6ht wird, wird mit der Zeit ein Punkt
erreicht, an dem die elektrischen Dipole im Gewebe den Feldverdnderungen nicht mehr schnell
genug folgen kénnen. Anders ausgedriickt bedeutet dies, dass sich der Rotationswinkel der elek-
trischen Dipole um die eigene Achse mit steigender Frequenz mehr und mehr verringert, da die
Polarisation dem dufleren elektrischen Feld immer stirker nachhinkt. Dadurch verringert sich die
Polarisierbarkeit des Gewebes. Durch die Verringerung der Polarisierbarkeit wird auch die Ener-
giemenge kleiner, die im Gewebe gespeichert werden kann. Dies ist gleichbedeutend mit einer
Verkleinerung des Realteils ¢,.(w) der komplexen relativen Permittivitit, die, wie in Abschnitt
3.3.1 erklart wurde, ein MafB fiir die Polarisierbarkeit eines Gewebes ist.

Steigt die Frequenz des dufleren elektrischen Feldes an, so wird nicht mehr alle Energie zur
vollstdndigen Orientierung der Dipole verwendet, sondern es erhéht sich zusétzlich der Ener-
gieverlust im Gewebe durch die Rotation und zuféllige thermische Bewegung der Molekiile mit
einem Dipolmoment. Dies zeigt sich bei Messungen durch ein Ansteigen der effektiven Leitfdhig-
keit wie in Gleichung (3.4) beschrieben wurde.

Dies verdeutlicht Abbildung 3.1 am Beispiel der Dispersion einer Kochsalzldsung mit einer Tem-
peratur von 37 °C. Die Parameter zur Berechnung der Kurven stammen aus der Arbeit von
STOGRYN (1971). Im Bereich von einigen Gigahertz kénnen die Wassermolekiile dem &dufleren
elektrischen Feld nicht mehr folgen. Daher verringert sich die Gesamtpolarisation der Ldsung
und die relative Permittivitdt fallt mit steigender Frequenz ab. Dies fiihrt zu einem Anstieg
der dielektrischen Verluste und damit zu einer Erhéhung der effektiven Leitfiahigkeit durch Ver-
groflerung des imaginéren Anteils der komplexen relativen Permittivitit e (w).

Steigt die Frequenz des dufleren Feldes weiter an, so nimmt damit die Auslenkung der Dipole
immer weiter ab. Irgendwann wird dann eine Frequenz erreicht, ab der die dielektrischen Verluste
wieder geringer werden. Die Kurve der effektiven Leitfihigkeit erreicht ein Maximum und f&llt
dann wieder ab, wie in Abbildung 3.1 zu sehen ist. Diese ,,Resonanzfrequenz® kann auch gezielt
zur Energiedeposition genutzt werden, wie dies z. B. in Mikrowellenherden der Fall ist und dort
einen gewl{inschten Effekt darstellt. Bei biologischem Gewebe treten mehrere Dispersionseffekte
auf, die im folgenden Unterkapitel vorgestellt werden.

3.4 Gewebeeigenschaften und mathematische Modelle

3.4.1 Dispersionsbereiche von biologischem Gewebe

Bei biologischen Geweben werden in der Regel drei Dispersionsbereiche unterschieden. In einigen
Quellen werden auch vier Dispersionbereiche genannt (z. B. bei RIGAUD ET AL. (1996)). Die
Dispersionbereiche werden mit den griechischen Buchstaben «, 8, v und § gekennzeichnet.

®Die Anzahl der Dipole, die sich parallel zur Feldrichtung ausrichten, ist aufgrund der statistisch verteilten
Wirmebewegung temperaturabhingig. Kithlt man das Gewebe ab, so erhéht sich die Orientierungspolarisation.
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Im Frequenzbereich zwischen zehn Hertz und einigen Kilohertz tritt bei biologischen Geweben
die a-Dispersion auf. Die Ursachen dieses Dispersionsmechanismus sind noch nicht vollstdndig
verstanden. Tm Bereich der a-Dispersion werden bei manchen Gewebetypen Anderungen des
Realteils der komplexen relativen Permittivitdt von einigen Zehnerpotenzen beobachtet. Einige
Autoren vermuten hierbei eine Aufladung der Zellmembran aufgrund von Molekiildiffusion oder
Ionenleitung durch die Zellmembran und die Entstehung von elektrochemischen Doppelschichten
(RIGAUD ET AL., 1996; PALKO & GALWAS, 1999; SCHWAN, 1957). Allerdings sind die ange-
gebenen Werte fiir die relative Permittivitédt, die bei kleinen Frequenzen Groéflenordnungen von
107 erreichen kann, sehr fragwiirdig, da dies implizieren wiirde, dass biologisches Gewebe einen
idealen Energiespeicher mit einer grofien Kapazitit darstellen wiirde. Ein Vergleich mit tabel-
lierten Werten fiir Dielektrika zeigt, dass dielektrische Werkstoffe in der Regel Permittivititen
zwischen 10° und 10% besitzen (KUCHLING, 1991). Andere Autoren weisen in ihren Arbeiten auf
Schwierigkeiten bei der Bestimmungen der relativen Permittivitét bei niedrigen Frequenzen hin
aufgrund auftretender Polarisationseffekte an den Messelektroden, die nur schwer zu kompen-
sieren sind. Aus diesem Grund werden die Messwerte nur mit dem Hinweis auf grofle mégliche
Abweichungen angegeben (GABRIEL ET AL., 1996B; Duck, 1990).

Die -Dispersion wird im Bereich von einigen Kilohertz bis in dem Megahertzbereich hinein be-
obachtet. Fiir die S-Dispersion werden hauptséchlich zwei Mechanismen verantwortlich gemacht.
Zum einen trennen die Zellmembranen aufgrund der Zellstruktur zwei gut leitfdhige Bereiche
voneinander — den intra- und den extrazelluliren Raum. Wenn die Frequenz des &ufleren Fel-
des zunimmt, verringert sich der Blindwiderstand der Zellmembran. Dadurch vergrofert sich
der Stromfluss durch das intrazellulire Medium, bis die Zellmembran komplett kurzgeschlossen
ist. Dadurch ergibt sich ein deutlicher Anstieg in der messbaren effektiven Leitfihigkeit. Durch
die Frequenzerhthung kénnen sich die Zellmembranen auch nicht mehr komplett aufladen, was
gleichzeitig zu einer Verringerung der relativen Permittivitét filhrt. Der andere Mechanismus der
eher im hoheren Frequenzbereich der g-Dispersion zum Tragen kommt ist die Orientierungspo-
larisation von Makromolekiilen, Proteinen und Zellorganellen. Teilweise wird dieser Dispersions-
effekt noch in zwei Untertypen — die 81- und Sa-Dispersion — aufgeteilt (RIGAUD ET AL., 1996;
PETHIG, 1991).

Im Mikrowellenbereich dominiert die -Dispersion. In diesem Frequenzbereich sind die Zellmem-
branen komplett kurzgeschlossen. Der Anstieg der effektiven Leitfihigkeit, verbunden mit einem
weiteren Abfall der relativen Permittivitat wird durch die polaren Eigenschaften der Wassermo-
lekiile im Gewebe verursacht, die bei diesen Frequenzen ihren Eigenschwingungsbereich errei-
chen. Einige Autoren definieren in diesem Frequenzbereich zusétzlich eine §-Dispersion, die sie
mit Schwingungen von Aminos&uren und geladenen Seitenketten von Proteinen in Verbindung
bringen (SCHEPPS & FOSTER, 1980).

Die Mechanismen der B- und ~-Dispersion sind heutzutage gut verstanden. Im Bereich der
a-Dispersion existieren noch zahlreiche offenen Fragen. Das Hauptproblem in diesem Frequenz-
bereich sind die bereits angesprochenen grofien Werte fiir die relative Permittivitdt des Gewebes.
Trotz einiger Modellvorstellungen und Erkldrungsversuche existiert bis heute noch keine zufrie-
denstellende Beschreibung dieses Phdnomens. Dazu wire dann auch die Frage zu erdrtern, in wie
weit die formelmiBige Definition der relativen Permittivitit in Gleichung (3.5) zum Verstind-
nis der groflen Werte ausreicht. Trotz der ungekldrten Fragen existieren einige Modelle, um die
Abhéngigkeit der dielektrischen Parameter von der Feldfrequenz zu beschreiben, wie im néchsten
Abschnitt demonstriert wird.
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3.4.2 Die Debye- und die Cole-Cole-Gleichung

Die Polarisation der Elektronen und des Atomkerns findet fast augenblicklich statt. Im Gegensatz
dazu braucht das Molekiil aufgrund seiner im Vergleich dazu langsamen Drehbewegung eine
gewisse Zeit, bis es sich zum Feld ausgerichtet hat. Dieser Zeitverlauf besitzt einen exponentiellen
Charakter mit einer Zeitkonstante 7, die auch Relazationszeit genannt wird.

Die dipolare Orientierung kann mit einem mechanischem Schwingungssystem erster Ordnung
verglichen werden. Dabei wird angenommen, dass die Polarisation sich nach Anlegen eines dufle-
ren elektrischen Feldes exponentiell mit der Zeit einstellt. Die Relaxation nach Debye ist ein
reiner viskoser Prozess ohne elastische Anteile und kann daher durch eine Differentialgleichung
erster Ordnung dargestellt werden (DEBYE, 1929). Fiir die Orientierunspolarisation P, ergibt
sich dann folgende Gleichung:

Polt) _ 1 (b b~ Poult)) - (3.7)

In dieser Gleichung stellt 7 die Relaxationszeit dar. Die Gréfie Pg ist die resultierende Polarisa-
tion bei statischem elektrischen Feld, die sich nach einer langen Einwirkzeit einstellt. P, gibt
den Anteil der instantanen Orientierungspolarisation aufgrund der schnellen Polarisation der
Elektronenwolken an. Bei sinusférmiger Feldanregung ergibt sich als Losung dieser Gleichung:

_PS_POO

Py, (w) = (3.8)

1+ jwr

Berticksichtigt man zusétzlich den instantanen Anteil der Polarisation, so ergibt sich als gesamte
komplexe Polarisation des Gewebes (RIGAUD ET AL., 1996):

PS_POO

P = Doo . .
_(w) Poo 1+ jwr

(3.9)

Vernachldssigt man im ersten Schritt der folgenden Betrachtung zunéchst die statische Ionen-
leitfihigkeit, so kann fiir die komplexe relative Permittivitdt nach Gleichung (3.9) folgender
Ausdruck abgeleitet werden (PALKO & GALWAS, 1999; GABRIEL ET AL., 19960C):

!/

fw)=¢_+ €18 ~ Eioe (3.10)
O 1+ jwr '

Hierbei ist fiir die GréBe e}, die Permittivitit des Gewebes bei unendlich hoher Frequenz ein-
zusetzen, wohingegen &y den Wert fiir die Permittivitét bei sehr kleinen Frequenzen zugewiesen
bekommt. Bildet man von dieser Gleichung den Real- und Imaginérteil und berticksichtigt die
statische Tonenleitfdhigkeit oy des Gewebes, so lassen sich analog zu den experimentellen Studien
mit dem Realteil die relative Permittivitit e, (w) und mit dem Imaginérteil unter Verwendung
von Gleichung (3.4) die effektive Leitfihigkeit oo (w) = o' (w) angeben:

(W) = el + IS 10 (3.11)
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€07 (Elg — €1eo) w?

14+ w2r2

Oeff (W) = 0 (3.12)

Diese Debye-Gleichungen berticksichtigen aber nur eine Relaxationszeit 7. Da Korpergewebe
mehrere Dispersionbereiche zeigt, ist es erforderlich, Gleichung (3.10) zu erweitern. In der Arbeit
von HURT (1985) wird eine Gleichung vorgestellt, bei der fiinf Debye-Terme aufsummiert werden
und zusétzlich die statische lonenleitfihigkeit o4 des Gewebes berticksichtigt wird:

rS n Og
=g E . 3.13
&l roc T — 1 +]w7'n ]wag ( )

Die beobachteten Dispersionsmechanismen sind aber so komplex, dass jeder einzelne Dispersi-
onsbereich eine gewisse Verbreiterung erfahren kann. Mit Hilfe eines empirischen Verteilungs-
parameters « kann in Gleichung (3.10) eine Verbreiterung der Dispersion hinzugefiigt werden.
Diese empirische Gleichung geht auf die Arbeiten von COLE UND COLE (1941) zuriick und wird
daher Cole-Cole-Gleichung genannt:

£y — €.
gw)=¢  +—B -t (3.14)
1+ (ij)l_a

Kombiniert man, wie in der Arbeit von GABRIEL ET AL. (1996C) vorgeschlagen die Gleichun-
gen (3.13) und (3.14) miteinander, so erhélt man die mit einer Summe von Dispersionstermen
erweiterte Cole-Cole-Gleichung:

I

rSn - Og
fw)=e + N 3.15
Z 1+ ]an 1 —an ]WES ( )

Die Anzahl n der einzelnen Dispersionsterme ist dabei noch nicht von vorneherein festgelegt,
sondern ergibt sich aus der jeweiligen Fragestellung. Die Anwendung dieser Gleichung wird im
néichsten Abschnitt gezeigt und diskutiert.

3.4.3 Anwendung der Cole-Cole-Gleichung nach Gabriel

Fiir die Durchfithrung numerischer Experimente in einem groflen Frequenzbereich ist es vor-
teilhaft, wenn die dielektrischen Parameter fiir die verschiedenen Koérpergewebetypen durch ein
Programm fiir die jeweilige Frequenz berechnet werden kénnen. Dies ist mit Hilfe von Gleichung
(3.15) moglich, wenn fiir jeden Gewebetyp die notwendigen Parameter £, _, ¢ , 7, und oy

roo? “rSn
bekannt sind.

Die Arbeit von GABRIEL ET AL. (1996¢) stellt fiir iiber 50 verschiedene Gewebetypen die not-
wendigen Parameter zur Verfligung. Dabei wurden anhand von verfiigharen experimentellen
Daten die Parameter von Gleichung (3.15) durch sukzessive Anpassung von Hand ermittelt.
Eine Anpassung mit Hilfe der Methode der kleinsten Fehlerquadrate schied aus, da sich der an-
zupassende Frequenzbereich iiber zahlreiche Zehnerpotenzen erstreckte, was eine systematische
Abweichung zu kleinen Frequenzen hin ergeben hétte.
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Abbildung 3.2: Dielektrische Eigenschaften von trockener Haut (a) und Muskelgewebe (b) nach

Gabriel Die Schaubilder wurden mit Hilfe von Gleichung (3.15) erstellt. Die griine Kurve reprasen-

tiert jeweils den Verlauf der Permittivitat ¢/ (w) abhdngig von der Frequenz. Die rote Kurve zeigt den

Verlauf der effektiven Leitfahigkeit oef(w). In beiden Diagrammen sind die jeweiligen Dispersionbe-

reiche mit dem entsprechenden griechischen Symbol gekennzeichnet (siehe Text). Bei den Werten
fiir trockene Haut fallt auf, dass keine a-Dispersion erkennbar ist.

Stattdessen wurde in mehreren Schritten von den hohen zu den niedrigen Frequenzen gearbeitet.
Der Wert fiir e, wurde entweder auf 2,5 oder auf 4 gesetzt, was einem niedrigen oder hohen
Wassergehalt des Kérpergewebes und damit dem bekannten Verhalten einer wissrigen Losung
entspricht.

Obwohl im untersuchten Frequenzbereich von 10 Hz bis 100 GHz nur drei fundamentale Disper-
sionbereiche (a,[,7) existieren, zeigte sich, dass sich mit einer Cole-Cole-Gleichung mit vier
Termen (n = 4) bessere Ubereinstimmung mit den experimentellen Daten erzielen lief3.

Abbildung 3.2 zeigt den Verlauf der Permittivitdt und der Leitfdhigkeit fiir trockene Haut und
Muskelgewebe, die durch Bildung des Real- und Imaginérteils von Gleichung (3.15) und den Pa-
rametern von GABRIEL ET AL. (1996C) bestimmt wurden. Muskelgewebe zeigt besonders deut-
lich die drei Dispersionbereiche «, § und -, wohingegen bei trockener Haut keine a-Dispersion
erkennbar ist. Die Kurven geben auch die experimentellen Werte in (GABRIEL ET AL., 19964,
GABRIEL ET AL., 1996B; SCHWAN, 1957; PETHIG, 1984) wieder.

Da die experimentellen Vergleichsdaten zum einen einer sehr breiten Streuung unterworfen sind
und zum anderen fiir manche Gewebetypen insbesondere im niederfrequenten Bereich keine
Messdaten existieren, geben die mit der erweiterten Cole-Cole-Gleichung (3.15) ermittelten Pa-
rameter gute Mittel- oder Schétzwerte an. Die Autoren beurteilen ihre Ergebnisse selbst erst ab
einer Frequenz von 1 MHz als zuverldssige Mittelwerte (GABRIEL ET AL., 1996C).

Werte fiir die dielektrischen Parameter von weiteren Gewebetypen bei verschiedenen Frequenzen,
die mit Gleichung (3.15) berechnet wurden, befinden sich in den Tabellen in Anhang B.
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Abbildung 3.3: Temperaturabhangigkeit der dielektrischen Parameter am Beispiel von Muskel- (rote
Kurven) und Nierengewebe (griine Kurven). Bild (a) zeigt den Temperaturgradienten der relativen
Permittivitat ¢/ (w) in Abhangigkeit von der Frequenz des duBeren elektrischen Feldes, Bild (b) den
Temperaturgradienten der effektiven Leitfahigkeit oefr(w) nach (Duck, 1990). Im Frequenzbereich
von 50 MHz bis 200 MHz andert sich die relative Permittivitat &/ (w) nur um ca. 1 % pro °C.

3.4.4 Temperaturabhingigkeit der dielektrischen Parameter

Die aus Gleichung (3.15) resultierenden Werte geben die dielektrischen Parameter bei einer
Gewebetemperatur von 37°C wieder. Generell besitzen die dielektrischen Parameter nicht nur

eine Frequenzabhéngigkeit, sondern sind auch temperaturabhingig. Dies wird aber in Gleichung
(3.15) nicht berticksichtigt.

Fiir biologische Gewebe stehen nur wenige experimentelle Daten zur Verfligung, die speziell die
Temperaturabhingigkeit der dielektrischen Parameter betrachten. Die wichtigsten Beitrige zu
dieser Problematik finden sich bei SCHWAN (1957), SCHWAN UND FOSTER (1980) und DuckK
(1990). In letzterer Arbeit werden anhand der Werte von SCHWAN UND FOSTER Temperatur-
koeflizienten fiir einige Gewebetypen in Abhéngigkeit von der Frequenz des &ufleren elektrischen
Feldes fiir einen Temperaturbereich von 20°C bis 40°C angegeben.

In der Regel steigt die effektive Leitfihigkeit mit der Temperatur bis zu einer Frequenz von
1 GHz mit bis zu 2 %/°C an. Der Koeffizient wird erst bei hoheren Frequenzen negativ. Die
relative Permittivitidt zeigt nur bis zu 50 MHz einen Anstieg um bis zu 1,5 %/°C und fillt
danach ab. Im Frequenzbereich zwischen 50 MHz und 200 MHz wurden in den meisten Fillen
nur sehr kleine Anderungen der Permittivitit (< 0,3 %/°C) beobachtet.

Abbildung 3.3 zeigt den Temperaturgradienten der relativen Permittivitit ¢! (w) und effektiven
Leitfahigkeit oeg(w) flir Muskel- und Nierengewebe und verdeutlich die Angaben des letzten
Absatzes. Die Daten des Diagramms wurden aus (DUCK, 1990) entnommen.

Da nur sehr wenige Daten zur Verfligung stehen lassen sich fiir nicht tabellierte Frequenzwerte
oder Gewebetypen nur vage Schitzwerte annehmen. Eine Extrapolation aufgrund vorhandener
Daten ist daher fraglich. Aus diesen Griinden werden die dielektrischen Parameter fir Koérper-
gewebe bei der thermodynamischen Rechnung niherungsweise als konstant angenommen (GU-
STRAU, 1997).
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3.5 Zusammenfassung

In diesem Kapitel wurden die frequenzabhéngigen dielektrischen Figenschaften von biologischem
Gewebe als wichtige physikalische Groe zur Durchfithrung numerischer Untersuchungen vorge-
stellt. Dabei wurde zunichst der physikalische Mechanismus der Orientierungspolarisation be-
schrieben, der zu einem komplexen Dispersionsverhalten der dielektrischen Parameter in einem
grofien Frequenzbereich fiihrt.

Biologisches Gewebe zeigt in der Regel drei Hauptdispersionsbereiche, die mit den griechischen
Buchstaben «, 8 und v gekennzeichnet werden und die in dieser Reihenfolge nacheinander bei
ansteigender Frequenz eines dufleren angelegten elektrischen Feldes beobachtet werden kénnen.
Dabei zeigen aber nicht alle Gewebetypen jede dieser Dispersionen. Jedem Dispersionstyp wur-
de dann ein Mechanismus auf zelluldrer Ebene zugeordnet. Dabei wurde auch auf bislang nicht
vollstdndig geklédrte Probleme bei dem Verstdndnis einzelner Dispersionsmechanismen eingegan-
gen.

Fiir die Durchfithrung numerischer Berechnungen in komplexen Modellen des menschlichen
Korpers ist es hilfreich, wenn die dielektrischen Parameter mit Hilfe von analytischen Formeln
niherungsweise beschrieben werden kdnnen und sich so problemlos in bestehende Programme
einbinden lassen. Als Grundlage dazu wurde die Arbeit von GABRIEL ET AL. (1996¢) beschrie-
ben, in der gezeigt wird, dass sich mit Hilfe einer parametrisch angepassten und erweiterten
Cole-Cole-Gleichung die dielektrischen Eigenschaften von biologischem Gewebe in einem grofien
Frequenzbereich beschreiben lassen.

Das Kapitel wurde mit einer Betrachtung der Temperaturabhingigkeit der dielektrischen Para-
meter von Korpergewebe abgeschlossen, da diese Parameter bei Temperaturverinderungen in
der Regel nicht konstant sind. Da zu dieser Fragestellung nur wenig Messdaten vorhanden sind,
ldsst sich keine generelle Aussage fiir alle Gewebetypen treffen. Bei Muskel- und Nierengewebe
wurde eine Temperaturabhingigkeit beobachtet, die selbst frequenzabhéngig ist. Es zeigte sich,
dass die Veréinderungen im betrachteten Frequenzbereich relativ klein (< 2 %/°C) sind, und
fir die effektive Leitfdhigkeit und die relative Permittivitit unterschiedliche Verldufe zeigen.
Aufgrund des Mangels an Messdaten fiir weitere Gewebetypen kénnen hier aber nur ungenaue
Annahmen gemacht werden. Die dielektrischen Parameter fiir Kérpergewebe werden daher fiir
die numerischen Untersuchungen néherungsweise als konstant angenommen.
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Kapitel 4

Biologische Wirkung
elektromagnetischer Felder

4.1 Einfiihrung

Die Wirkung elektromagnetischer Felder auf die Gesundheit des Menschen ist in den Industriena-
tionen der westlichen Welt in den letzten Jahren zu einem immer wichtigeren Thema zahlreicher
Diskussionen geworden. Dies liegt auch in einer oftmals ungenauen Berichterstattung der Me-
dien. Wissenschaftlich fundierte Kenntnisse und Ergebnisse selbsternannter Experten werden
vermischt, so dass der Normalbiirger nicht mehr differenzieren kann. Eine vermehrte und einsei-
tige Darstellung angeblich krankmachender Effekte in den Medien und dadurch eine generelle
Erzeugung von Angst und Verwirrung in der Bevdélkerung tun ihr iibriges und machen eine
Aufklarung iiber die tatséchlichen Effekte, Gefahren und Risiken sehr schwierig oder unmdoglich
(DAVID ET AL., 1995).

Eine genaue Kenntnis iiber die wissenschaftlich abgesicherten Effekte ist aber im Rahmen nu-
merischer Studien wichtig, um die Wirkungen der berechneten Felder abschitzen zu kénnen
und die numerischen Ergebnisse hinsichtlich ihrer Einfliisse auf den menschlichen Korper zu
interpretieren. Zu den bekannten Wechselwirkungen von elektromagnetischen Feldern mit bio-
logischem Gewebe gehéren z. B. die Induktion von Strémen durch die Auslibung von Kréiften
auf bewegliche Ladungsgtrager im gut leitfahigen Korpergewebe und dadurch die Stimulation
erregbarer Strukturen wie Muskel- oder Nervengewebe. Neben der Stimulation kann es auch zur
Erwiarmung von Gewebe durch die Absorption von Leistung aus einem hochfrequenten elektro-
magnetischen Wechselfeld kommen, die durch Verlustprozesse von sich ausrichtenden Dipolen
im Wechselfeld entsteht. Mafigeblich fiir die Art des beobachteten Effektes ist die Frequenz des
Wechselfelds.

Die Abschnitte dieses Kapitels gliedern sich wie folgt: zundchst werden wichtige Hinweise zur Be-
schreibung und Klassifikation der Wechselwirkung elektromagnetischer Felder mit dem mensch-
lichen Korper gegeben. Dabei wird an erster Stelle auf die grundlegenden physikalischen Mecha-
nismen eingegangen, gefolgt von der Definition einiger gebrduchlicher Fachbegriffe.

Im folgenden werden die wichtigsten Wechselwirkungseffekte vorgestellt. Dazu zéhlen zum einen
die Stimulation von Muskel- und Nervengewebe und zum anderen die Erwirmung von Gewe-
be aufgrund der Leistungsabsorption aus einem elektromagnetischen Wechselfeld. Im Rahmen
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der Darstellung wird zunéichst auf die Physiologie und im speziellen auf die Wechselwirkung
des elektromagnetischen Feldes mit den physiologischen Mechanismen eingegangen. Ein weiterer
Schwerpunkt liegt auf der Angabe und Ableitung von Formeln zur Weiterverarbeitung der durch
numerische Simulationen gewonnenen Erkenntnisse, so dass eine Interpretation und Bewertung
der numerischen Ergebnisse hinsichtlich ihrer physiologischen Wirkung méglich wird. Eine Be-
trachtung anderer Effekte, die in der wissenschaftlichen Literatur diskutiert werden schliefit die
Darstellung der wichtigsten Wechselwirkungen ab.

Um die Wechselwirkungen beziiglich ihres Gefidhrdungspotentials fiir den Menschen einteilen zu
kénnen und damit die untersuchte medizinische Anwendung bewerten zu konnen ist ein Ver-
gleich der abgeleiteten Ergebnisse mit gingigen Grenzwerten unerlésslich. Dazu werden zum
einen die Ableitung von Grenzwerten an einem Beispiel erldutert und die wichtigsten Fachbe-
griffe definiert. Zum anderen werden die géngigen Grenzwerte angebeben und in verschiedene
Klassen eingeteilt. Diese Grenzwerte werden in den folgenden Kapiteln zu einer Bewertung der
numerischen Ergebnisse verwendet.

4.2 Thermische und athermische Effekte

4.2.1 Wechselwirkungsvorginge und Definition einiger Fachbegriffe

Bei der Wechselwirkung zwischen elektromagnetischen Feldern und lebenden Gewebe unter-
scheidet man zwei grundlegende Mechanismen - Stimulation und Erwdrmung von Gewebe. Im
niederfrequenten Bereich wird dariiber hinaus zwischen der Wechselwirkung von elektrischen
und magnetischen Wechselfeldern unterschieden, wohingegen im Hochfrequenzbereich die Ener-
gieabsorption aus dem elektromagnetischen Feld betrachtet wird.

Ein elektrisches Feld tibt auf Ladungstriger Kréfte aus und fiihrt dadurch zu einer Verschiebung
dieser Ladungstriager, was in einem Stromflufl durch das Gewebe resultiert. Weiterhin fiihrt ein
elektrisches Feld zu der Bildung von elektrischen Dipolen durch die Ausrichtung gebundener
Ladung, sowie zur Orientierung von elektrischen Dipolen, die bereits im Gewebe vorhanden
sind. Die GroBen dieser Effekte hingen fiir den Stromfluss von der effektiven Leitfahigkeit (sie-
he Abschnitt 3.3.2) und fiir die Polarisation von der relativen Permittivitdt des Gewebes ab.
Externe elektrische Felder fiihren zusétzlich zur Entstehung von Oberflichenladungen auf der
Korperoberfliche, was in einem zusétzlichen Stromfluss durch den Koérper resultiert.

Zeitverinderliche magnetische Felder fiihren iiber das Induktionsgesetz (2.1) zu elektrischen
Feldern und damit zu kreisférmigen Stromfliissen. Der Stromfluss ist umso stérker, je grofer
der Radius der Stromschleife, sowie die Stdrke und Frequenz des magnetischen Wechselfeldes
sind. Der Weg des Stromes durch den Ké&rper und die resultierende Stromstérke h&ngen dabei
in erster Linie von der Leitf&higkeit des Gewebes ab (VILLA ET AL., 1991).

Betrachtet man die Wirkungen elektromagnetischer Felder auf den menschlichen Kérper, so ist
es notwendig einige Begriffe zu definieren und voneinander abzugrenzen. Die Wechselwirkung
eines Feldes erzeugt z. B. wie beschrieben durch eine Kraftwirkung eine Verschiebung von La-
dungstriagern im Gewebe. Dieser Effekt wird zunédchst als biologische Wirkung bezeichnet. Die
Existenz einer biologischen Wirkung bedeutet aber nicht automatisch, dass sich durch die Wech-
selwirkung des elektromagnetischen Feldes mit dem Gewebe eine Schidigung des Organismus
ergibt.
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Effekte, die in unmittelbaren Zusammenhang mit einer Wechselwirkung des Organismus mit
einem einwirkenden elektromagnetischen Feld stehen und zu einer nachweisbaren Verénderung
oder Schidigung des Gewebes oder einer anderweitigen Beeintréchtigung des Organismus fithren,
werden als gesundheitliche Wirkung bezeichnet. Eine gesundheitliche Wirkung beinhaltet in
jedem Fall auch immer eine biologische Wirkung, der Umkehrschluss gilt aber nicht in jedem
Fall. Dabei muss beachtet werden, dass gesundheitliche Wirkungen zu therapeutischen Zwecken
durchaus erwiinscht sein kénnen und daher noch zwischen erwiinschten und unerwiinschten
gesundheitlichen Wirkungen unterschieden werden muss.

Der Punkt, an dem aus einer biologischen Wirkung eine gesundheitliche Wirkung wird, ist von
mehreren Parametern abhingig. Eine wichtige Rolle spielt z. B. die Frequenz und die Stérke
des elektromagnetischen Wechselfelds. Daneben muss auch beriicksichtigt werden, ob das Feld
kontinuierlich oder gepulst ist. Falls letzteres zutrifft ist auch zu beachten, welche Pulsform das
Feld besitzt. Weiterhin sind noch individuelle Empfindlichkeiten des einzelnen Organismus zu
beriicksichtigen, da bei jedem Menschen unterschiedliche Schwellenwerte beim Ubergang einer
biologischen Wirkung zu einer gesundheitlichen Wirkung bestehen. Grenzwerte orientieren sich
daher stets an experimentellen Beobachtungen, z. B. dass bei einem Stromfluss unterhalb einer
Grenzstromstérke bei keinem Probanden eine Wirkung auftritt.

Eine weitere Unterscheidung ist die Einteilung der biologischen Wirkungen in athermische und
thermische Effekte. Thermische Effekte zeigen sich in einer Erwirmung des Korpergewebes durch
die Absorption von Energie aus einem elektromagnetischen Feld. Unter athermischen Effekten
versteht man alle anderen Effekte, die nicht mit einer Erwarmung von Gewebe einhergehen. Dazu
zdhlen z. B. die Stimulation von Muskel- und Nervengewebe, die Wirkungen auf aktive medizini-
sche Implantate (z. B. Funktionsstérungen von Schrittmachern), aber auch Vermutungen, dass
elektromagnetische Felder die Entstehung von Krebs férdern oder zahlreiche psychosomatische
Beschwerden auslsen kénnten.

Auch hier muss beachtet werden, dass bei einem Auftreten eines dieser Effekte jeweils eine
biologische Wirkung vorhanden ist, aber dieses nicht zwingend eine gesundheitliche Wirkung mit
sich bringt. So kann z. B. eine Stimulation eines peripheren Nervs nur zu einer ungefihrlichen
Kontraktion eines Muskels des Bewegungsapparates fiihren. Gleichwohl kann bei gentigender
Stérke der Reizung auch tieferliegendes herznahes Gewebe oder sogar das Herz selbst stimuliert
werden, was zu einem lebensbedrohlichen Kammerflimmern der Herzmuskulatur fithren kann.

Das Auftreten thermischer und athermischer Effekte ist an den Frequenzbereich des elektroma-
gnetischen Feldes gekoppelt. Im niederfrequenten Bereich spielt die Absorption von elektroma-
gnetischer Energie im Gewebe nur eine untergeordnete Rolle, da dort die Effekte, die durch den
induzierten Stromfluss hervorgerufen werden iiberwiegen. Dies &ndert sich bei einer Zunahme
der Feldfrequenz. Die Féhigkeit mit Strémen Nerven zu stimulieren nimmt ab 1 kHz stark mit
der Frequenz ab, so dass dann die thermischen Effekte tiberwiegen. Dies ist aber nur eine gro-
be Richtlinie. Oft treten auch Wirkungen auf, die durch thermische und athermische Effekte
gemeinsam verursacht werden.

Zur Verdeutlichung dieser Unterschiede werden einige athermische und thermische Effekte in
den folgenden Abschnitten erklart und diskutiert. Dies sind insbesondere die Enstehungsmecha-
nismen von Muskel- und Nervenstimulation sowie die Erwdrmung von Gewebe durch elektro-
magnetische Felder. Danach werden einige Beispiele fiir weitere athermische Effekte gegeben.
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Abbildung 4.1: Auslésung eines Aktionpotentials
durch einen rechteckférmigen Stimulus. Im Ruhe-
zustand liegt das Zellinnere gegeniiber dem Extra-
zellularraum auf einem negativen Potential. Wird
durch einen externen Stimulus, der iiber eine aus-
reichende Lange t, und Starke verfiigt, das Poten-
tial vom Ruhepotential RP iiber die Reizschwel-
le RS angehoben, so folgt eine spontane Depola-
risierung der Zellmembran. Dabei steigt das Po-
tential der Zelle kurzzeitig auf positive Werte an. RS e N t AV
Wahrend der Refraktarzeit t, nach Auslosen des RP )
Aktionspotentials ist die Zelle nicht wieder erreg- Stimums_,(_t__)\—
bar. ‘

o
—_

4.2.2 Stimulation von Muskel- und Nervengewebe

Der menschliche Kérper besitzt Nerven- und Muskelzellen, die elektrisch erregbar sind. Im Ru-
hezustand einer Zelle besteht im Extrazelluldrraum eine gréfere Natriumionenkonzentration als
im Intrazellulirraum, der einen Uberschuss an Kaliumionen enthilt. Im Ruhezustand bildet
sich so ein Membranpotential aus, bei dem das Zellinnere auf einem negativen Potential von ca.
70 - 90 mV gegen den Extrazelluldrraum liegt (GEDDES, 1995). Daneben bestehen Zellen aus
einer hoch isolierenden Phospholipidmembran mit Ionenkanélen, die sich 6ffnen kénnen, so dass
z. B. Natriumionen vom Extrazelluldrraum in den Intrazelluldrraum strémen kénnen. Um eine
Zelle zu erregen, muss durch einen Stromfluss im Gewebe das Membranpotential ausgehend von
Ruhepotential auf etwa -50 mV erh6ht werden. Dies wird auch Depolarisation genannt, da sich
dadurch das resultierende Potential zwischen Intra- und Extrazelluldrraum verringert (SCHMIDT
ET AL., 2000).

An diesem Schwellenpotential wird die Membranladung instabil und baut sich durch schlagarti-
ges Offnen der Ionenkanile ab und kehrt durch einen Natriumioneneinstrom ihre Polaritit um.
Das Potential zwischen Intra- und Extrazellulirraum wird durch den raschen Natriumionenein-
strom kurzzeitig sogar positiv. Diesen Vorgang der Depolarisation nennt man auch Erregung.
Die Depolarisationsphase des Aktionspotentials setzt weiterhin selbst Prozesse in Gang, die die
Ruhemembranladung wiederherstellen.

Die dadurch entstehende Membranspannung wird auch Aktionspotential genannt (SCHMIDT
ET AL., 2000). Sie zeichnet sich durch einen sprunghaften Anstieg des Membranpotentials durch
die schnell einstrémenden Natriumionen aus, der durch einen kurzzeitig spéiter einsetzenden Ka-
liumionenausstrom gebremst wird. Abbildung 4.1 zeigt beispielhaft die Entstehung eines Ak-
tionspotentials. Diese Erregung kann sich dann durch verschiedene Mechanismen fortpflanzen
und wird so auf benachbarte Strukturen {ibertragen.

Depolarisiert man unmittelbar nach dem Aktionspotential die Membran bis zur Schwelle des
vorhergehenden Aktionspotentials und sogar dartiber hinaus, so tritt keine Erregung auf. Dieser
Zustand wird absolute Refraktirphase genannt und hat bei Nervenzellen eine Dauer von ca.
2 ms. Nach der absoluten Refraktdrphase schliefit sich die relative Refraktirphase an, in der
durch grofle Depolarisationen Aktionspotentiale ausgelost werden konnen, diese aber gegeniiber
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Abbildung 4.2: Zusammenhang  zwischen

Stromstarke und Pulsdauer bei der Erregung von 5e-02
Muskel- und Nervengewebe. Je kiirzer die Puls- \
dauer, desto groBer muss die Stromstérke sein, fe02
um ein Aktionspotential zu erzeugen. Es existiert \

eine minimale Stromstarke, bei der selbst bei einer o \
unendlich langen Pulsdauer keine Erregung mehr 20:02 \
erzeugt wird. Diese Stromstarke wird Rheobase S~ Rheobase
genannt. Uber die Rheobase wird die Chronaxie le0z 1
definiert. Die Chronaxie ist die Zeitdauer, die bei bes00

einem Strom mit der Starke der doppelten Rheo- 0e+00 2603 4e-03  6e:03  8e:03  le02
Zeit in s

Strom in A

Chronaxie

base benotigt wird, um eine Erregung auszultsen
und stellt eine gewebetypische Konstante dar.

normalen Aktionspotentialen kleinere Amplituden haben. Die Refraktdrphase wird durch eine
zeitlich begrenzte Inaktivierung der Natriumionenkanfle unmittelbar nach der Depolarisation
verursacht. Diese Inaktivierung wird durch die Repolarisierung wieder aufgehoben, was einige
Millisekunden benétigt. Wahrend dieser Zeit sind die Natriumionenkan&le nicht oder nur bedingt
aktivierbar (SCHMIDT ET AL., 2000).

Die Tatsache, dass eine Erregung von Zellen nur im niederfrequenten Bereich zustande kommt
beruht darauf, dass zu einer Offnung der Natriumkanile gewisse Strukturverinderungen in den
Tunnelproteinen notwendig sind, die nicht beliebig schnell ablaufen kénnen. Wenn also bei Fre-
quenzen ab einigen Kilohertz die Halbwelle zu kurz wird, dann kénnen nicht ausreichend Natriu-
mionen bewegt werden, um ein Auslésen des Aktionspotentials zu erzeugen. Es entsteht folglich
keine Erregung. Bei sehr niedrigen Frequenzen findet ebenfalls keine Erregung statt, da dann
die Potentialdnderung so langsam erzeugt wird, dass aktive Transportmechanismen wie z. B.
die Natrium-Kalium-Pumpe den Effekt wieder ausgleichen kénnen (GEDDES, 1995). Bei der in
Deutschland {iblichen Netzfrequenz von 50 Hz sind optimale Bedingungen fiir eine Stimulati-
on gegeben, da die Dauer einer Halbwelle sehr gut fiir die Ausbildung eines Aktionspotentials
geeignet ist. Daraus resultieren die besonderen Gefahren fiir die Gesundheit bei Kontakt mit
stromfiihrenden Netzleitungen.

Die Erregbarkeit von Gewebe bei sehr niedrigen Frequenzen oder sogar Gleichstrom ist aber nicht
nur von der Frequenz sondern auch von anderen Faktoren abh#ngig. Schon frith erkannten WEISS
(1901) und LAPICQUE (1909) den Zusammenhang zwischen Pulsdauer und Stromstérke eines
rechteckférmigen Pulses zur Erregung von Gewebe. Dabei wurden von LAPICQUE die Begriffe
Chronarie und Rheobase eingefiihrt. Der Begriff Rheobase bezeichnet hierbei einen Grenzstrom,
der selbst bei einer unendlich langen Pulsdauer gerade nicht mehr zu einer Erregung fiihrt. Die
Chronaxie wird tiber die Rheobase definiert. Die Chronaxie ist die Zeitdauer, die bei einem Strom
mit der Stdrke der doppelten Rheobase benétigt wird, um eine Erregung auszulésen und stellt
eine gewebetypische Konstante dar. Fiir den Zusammenhang zwischen bendétigter Stromstérke
und Pulsdauer ¢, um eine Stimulation zu erzeugen leitete BLAIR (1932) das Stimulationsge-
setz ab, welches in Abhéngigkeit der Rheobase b (A), der Membranzeitkonstante 7 (s) und der
Pulsdauer ¢, (s) die fiir eine Stimulation notwendige Stromstérke angibt:

53



Biologische Wirkung elektromagnetischer Felder

le+01

Abbildung 4.3: Bei sinusférmigen Wechselstrom

hangt die notwendige Stromstarke, eine Stimula- 16400
tion zu erzeugen, von der Frequenz des Stromes
ab. An diesem Beispiel fiir menschliches Muskel-
gewebe erkennt man einen Anstieg der benotigten
Stromstérke ab einer Frequenz von 100 Hz. Dabei
wurde willkiirlich angenommen, dass mindestens
eine Stromstarke von 10 mA fiir eine Stimulation L0

notwend ig ist. 16+00 le+01 1e+02 1e+03 1e+04 1e+05
Frequenz in Hz

le-01

Strom in A

le-02

b

I(ty) = " - (4.1)

Die Membranzeitkonstante! und die Rheobase sind hierbei gewebespezifische Gréfien, die expe-
rimentell bestimmt werden miissen. Abbildung 4.2 zeigt eine Strom-Pulsdauer-Kurve, die mit
Gleichung (4.1) berechnet wurde. Als Rheobase wurde b= 10 mA und als Membranzeitkon-
stante 7 = 2 ms angenommen als Beispiel fiir menschliches Muskelgewebe. Tabellen mit experi-
mentellen Werten fiir Membranzeitkonstanten befinden sich in (GEDDES, 1995). Zusétzlich zur
Rheobase ist im Schaubild auch die Chronaxie eingezeichnet, die ungeféhr bei £ = 1,4 ms liegt.

Bei der Stimulation von Gewebe durch Wechselstrom kann ein Zusammenhang zwischen bendtig-
ter Stromstérke und Stimulationsfrequenz hergeleitet werden. Dabei wird in Gleichung (4.1) fiir
die Pulsdauer t;, einfach die Periodendauer T'= 1/ f des sinusférmigen Wechselstroms eingesetzt
und man erh&lt die Stimulationsstromstérke in Abhéngigkeit der Frequenz:

b

Aus Gleichung (4.2) ist ersichtlich, dass bei ansteigender Frequenz eine gréfere Stromstérke zur
Erzeugung einer Stimulation notwendig ist, wie bereits weiter oben begriindet wurde. Abbildung
4.3 zeigt den Zusammenhang zwischen Frequenz und Stromstérke bei menschlichem Muskelge-
webe. Als Rheobase wurde wiederum ein Strom von b = 10 mA und eine Membranzeitkonstante
von 7 = 2 ms angenommen.

Bei der Bewertung numerischer Ergebnisse kann aus dem berechneten elektrischen Feld mit
Gleichung (3.3) die Stromdichte im Kérpermodell berechnet werden. Daraus ldsst sich dann
abschétzen, ob die Grenzstromstéirke {iberschritten wurde und eine Stimulation von Muskel-
oder Nervengewebe erfolgt.

Eine unerwiinschte gesundheitliche Wirkung bei der Stimulation von Muskel- und Nervenge-
webe, ist zum einen die Verletzungsgefahr, da bei einer Stimulation unwillkiirliche und nicht
steuerbare Bewegungen der GliedmafBen ausgefithrt werden und so z. B. gerade Stiirze von Lei-
tern bei Elektroarbeiten keine Seltenheit sind (GEDDES, 1995) (vgl. dazu auch die Arbeit von

!Die Membranzeitkonstante ist nicht mit der Chronaxie zu verwechseln. Die Chronaxie ist die Pulsdauer,
die bei einer Stromstirke von doppelter Rheobase notwendig ist. Die Membranzeitkonstante ist die notwendige
Pulsdauer bei einer Stromstirke von 1,59-facher Rheobase (GEDDES, 1995).
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NYENHUIS ET AL. (1999)). Problematisch sind auch Stimulationen von Herzmuskelgewebe, wenn
bei gentigend grofler Stromstirke auch herznahe Strukturen gereizt werden. Im schlimmsten Fall
fliet ein Strom direkt durch den Herzmuskel, der die Erregungsbildung und koordinierte Kon-
traktion des Herzen unterbricht und zu einem Flimmern der Herzmuskulatur fithrt. Dies findet
fast immer einen todlichen Ausgang, wenn dem Betroffenen nicht schnell addquat mit einem
Defibrillator Hilfe geleistet wird.

Neben den Gefahren durch Stimulation von Muskel- und Nervengewebe gibt es auch zahlrei-
che erwiinschte gesundheitliche Wirkungen, die zu Therapiezwecken in der medizinischen Praxis
durch die Anwendungen von niederfrequenten Stréomen entstehen, z. B. bei der Reizstromthera-
pie und der transkutanen Elektronervenstimulation (TENS). Weiterhin sind alle Schrittmacher-
anwendungen am Herzen oder Nervengewebe zur Stimulation oder Schmerztherapie, sowie der
Defibrillation von flimmernden Herzen als lebensrettende Mafinahme in der Notfallmedizin zu
nennen.

4.2.3 Erwirmung durch hochfrequente elektromagnetische Strahlung

Die durch elektromagnetische Felder ausgeléste Schwingung von elektrischen Dipolen in biolo-
gischen Geweben erzeugt einen Energieverlust der mit steigender Feldfrequenz den dominieren-
den Effekt ergibt. Dieser Energieverlust fiihrt zu einer Erwarmung von Koérpergewebe. Aus der
medizinischen Erfahrung ist bekannt, dass der menschliche Kérper erhebliche Warmezufuhren
verkraften kann und mit Hilfe seines thermoregulatorischen Systems Erwdrmungen z. B. durch
Schwitzen entgegenwirken kann. Allerdings liegen die Thermorezeptoren in der Haut, so dass
Wirme, die in der Tiefe entsteht, erst verzogert wahrgenommen wird. Dieser Umstand kann bei
schlecht durchbluteten Organen wie dem Augapfel zu unerwiinschten Effekten fiihren, da eine
Ubererwirmung von den kérpereigenen Rezeptoren unter Umstinden erst zu spit wahrgenom-
men wird.

Im Gegensatz dazu wird in der medizinischen Praxis die Erwdrmung durch elektromagneti-
sche Felder gezielt zur Therapie von muskuldren Problemen und Schmerztherapie in Form von
Diathermieanwendungen mit Mikrowellen oder zur Hyperthermiebehandlung von Tumoren im
Korper verwendet. Hier werden Korperregionen gezielt erwdrmt oder sogar regelrecht iiberhitzt,
um eine selektive Zerstérung von Gewebe zu erreichen.

Fiir die Bewertung der Auswirkungen eines hochfrequenten elektromagnetischen Feldes auf den
menschlichen Korper ist aber nicht nur die durch Absorption aufgenommene Gesamtwérme-
menge entscheidend, sondern auch an welchen Stellen im Korper diese Warmeenergie deponiert
wurde. Bei der numerischen Betrachtung muss daher ausgehend von der elektromagnetischen
Feldverteilung im Kérpermodell die lokal deponierte Leistung berechnet werden.

Bei der Wechselwirkung eines zeitharmonischen sinusférmigen elektrischen Feldes mit biologi-
schem Gewebe findet aufgrund der in den vorherigen Abschnitten beschriebenen Mechanismen
eine Energiedeposition im Gewebe durch Leistungsabsorption aus dem elektrischen Wechselfeld
statt. Bei der folgenden Beschreibung werden zweckmiBigerweise die Feldgréfien und die daraus
abgeleiteten Groflen in komplexer Notation wiedergegeben, wie es bereits in Abschnitt 2.3 fiir
zeitharmonische Probleme eingefiihrt wurde.

Die in einem infinitesimal kleinen Volumen AV aufgenommene elektrische Leistung Py l&sst sich
dann nach JACKSON (1975) aus dem Skalarprodukt der komplexen Amplitude des elektrischen
Feldes £ mit der konjugiert-komplexen Amplitude der Gesamtstromdichte J g* berechnen:
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BE =

J, - E-AV. (4.3)

| =

Setzt man in diese Gleichung fiir die Gesamtstromdichte ig Gleichung (3.3) ein, so ergibt sich:

1
e
52

—% — 1 —
W E - E-AV = oot w)|E- AV (4.4)

BE = EL]
Die komplexe Leistung Py setzt sich aus der Wirkleistung und der Blindleistung zusammen
(STOCKER, 1998). Als erstere wird der Realteil von Pp bezeichnet, als Blindleistung der Ima-
ginérteil. Aus Gleichung (4.4) ist ersichtlich, dass die Grofe der einzelnen Anteile der komplexen
Leitfahigkeit o(w) iiber die Aufteilung der Leistung in Wirk- und Blindanteil entscheidet. Setzt
man fiir ¢*(w) in Gleichung (4.4) die Definition aus Gleichung (3.6) komplex-konjugiert ein, so
ergibt sich mit F.ps = |E|

1
Py = 3 (crS + weoey (W) — jWEOf‘?{»(w)) : Eibs CAV. (4.5)

Damit ergibt sich fiir die Wirkleistung Py mit Gleichung (3.4) und ou(w) = o' (w):

1
Py =Re{Pg} = = (05 +wepel (w)) - B3 - AV = et (w) - E% .- AV . (4.6)

[N

Der Term % ou¢(w) - B2 | in Gleichung (4.6) gibt die absorbierte Leistungsdichte im Gewebe an
und ist identisch mit dem Eingabeparameter ggp in Gleichung (2.56) fiir den thermodynamischen
Lésealgorithmus, wie in Abschnitt 2.6 beschrieben wurde.

Fiir eine erste Bewertung der Auswirkungen der Leistungsabsorption aus einem elektrischen
Wechselfeld kann aber schon Gleichung (4.6) herangezogen werden, ohne einen weiteren nu-
merischen Losungsschritt durchzufiihren. Dazu wird die spezifische Absorptionsrate als neue
Grofle eingefiihrt, die die absorbierte Leistung pro Kilogramm Objektgewicht angibt (DURNEY
& CHRISTENSEN, 2000):

E2
SAR = 0 (w)—2bs (4.7)
2p
Die spezifische Absorptionsrate ist ein Maf fiir die Belastung von Organismen durch elektro-
magnetische Wellen und eine fundamentale Grofle bei der Angabe von Grenzwerten. Mit Hilfe
dieser Grofle ldsst sich auch eine einfache Abschitzung fiir die Erwidrmung von Gewebe ange-
ben, wenn man jegliche Energiedissipation durch Warmetransportmechanismen vernachlissigt.
Dazu ist der Wert fiir die spezifische Absorptionsrate mit der Wechselwirkungszeit tyy, zwi-
schen Gewebe und elektromagnetischem Wechselfeld zu multiplizieren und durch die sepzifische
Wirmekapazitit c; zu dividieren. Die absolute Temperaturerh6hung ergibt sich dann zu:

_ SAR tyw  Oeg(w) - E% - taw

a

AT (4.8)

Cs 2pcs

Dieser Weg empfiehlt sich aber nur fiir einfache Abschitzungen, wenn z. B. aus Zeitgriinden auf
eine weitere numerische Analyse mit dem thermodynamischen Loser verzichtet werden muss,
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da die berechnete Temperaturerhdhgung linear mit der Wechselwirkungszeit tyy, ansteigt und
damit iiber alle Grenzen steigen kann, was nicht der Realitét entspricht. Die abgeleiteten Tem-
peraturerhthungen ergeben daher in der Regel eine deutliche Uberschiitzung der Gegebenheiten,
insbesondere bei Annahme grofler Wechselwirkungszeiten ty und sind daher nur begrenzt ver-
wendbar, z. B. wenn es um Schlimmsten-Fall-Abschitzungen geht. Wenn genauere Aussagen
gemacht werden sollen, dann kann auf eine Kopplung der numerischen Prozesse, wie in Ab-
schnitt 2.6 beschrieben, nicht verzichtet werden.

4.2.4 Weitere athermische Effekte

Der Begriff athermische Effekte ist eigentlich aus dem hochfrequenten Bereich abgeleitet und
soll berticksichtigen, dass neben Erwidrmungseffekten auch noch andere Erscheinungen auftreten
kdnnen. Weiter gefasst versteht man darunter aber alle nicht-thermischen Effekte, also auch die
bereits beschriebene Stimulation von Muskel- und Nervengewebe. Daneben werden auch noch
zahlreiche andere Wirkungen beobachtet, die hier kurz wiedergegeben werden sollen.

Ein besonders wichtiger Aspekt in Bezug auf die Patientensicherheit ist die Wirkung elektroma-
gnetischer Felder auf Implantate. Hier steht neben moglichen Erwirmungseffekten des Implan-
tats immer die Funktionssicherheit im Vordergrund. Besonders kritisch sind Funktionsstérungen
von Herzschrittmachern zu betrachten, die je nach Stérungsart zu lebensbedrohlichen Zustdnden
fiir den Patienten fiihren konnen. Bei einer Betrachtung dieser Problematik muss unter anderem
die Schrittmacherart, die Positionierung im Korper und die therapierte Herzrhythmusstérung
beriicksichtigt werden. Einen Uberblick iiber die Problematik mit zahlreichen weiteren Litera-
turhinweisen findet sich bei SMITH UND AASEN (1992), sowie bei BOSSERT (1999).

Weiterhin wird im Rahmen von psychosomatischen Effekten eine Elektrosensibilitdt von Perso-
nen diskutiert. Dies stellt die Beeintrichtigung der Gesundheit durch nieder- und hochfrequente
Felder jeglicher Art dar, oft ausgeldst durch das Vorhandensein von Hochspannungsfreileitungen
oder Mobilfunkbasisstationen in Sichtweite der Betroffenen, die {iber Schlafstérungen, Essstérun-
gen, Kopfschmerzen und Migréine oder andere gesundheitliche Beschwerden klagen und diese mit
den elektromagnetischen Feldern in Verbindung bringen. Bereits vor iiber zwanzig Jahren wurde
von KUHNE (1980) die Elektrosensibilitit von Menschen in einem groffangelegten Experiment
untersucht. Dabei stellte sich schon damals heraus, dass die Elektrosensibilitdt von Menschen
in den meisten Féllen auf psychologische Probleme zurtickzufiihren ist und in erster Linie keine
besondere “Wahrnehmungsgabe,, fiir elektromagnetische Felder darstellt.

Eine vieldiskutierte Hypothese ist auch der Einflufl auf den Melatoninstoffwechsel durch elektro-
magnetische Felder. Melatonin ist ein Hormon, was den Schlaf-Wach-Rhythmus des Menschen
beeinflusst. Es wird auch mit der Entstehung von Krebs in Verbindung gebracht (REISSEN-
WEBER ET AL., 1996). Gerade Krankheiten ohne bisherige klare Genese, wie z. B. Hirntumore,
werden oft in Verbindung mit den Auswirkungen schwacher elektromagnetischer Felder gebracht.
Bislang konnte aber kein Kausalzusammenhang zwischen der Entstehung von Krebs und elek-
tromagnetischen Wechselfeldern reproduzierbar nachgewiesen werden, auch wenn immer wieder
Studien auftauchen, die eben diesen Kausalzusammenhang gefunden haben wollen. Mit dieser
speziellen Problematik der Entstehung von Krebs durch 50-Hz-Felder setzt sich die Arbeit von
IRNICH (1996) auseinander.

Auf eine weitere Diskussion psychosomatischer und hormoneller Effekte wird im Rahmen dieser
Arbeit verzichtet, da sie zum einen immer noch umstritten sind und sich zum anderen mit den
hier verwendeten numerischen Methoden nicht erfassen und beurteilen lassen.
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4.3 Grenzwerte

4.3.1 Grundlagen der Grenzwertfindung

Grenzwerte dienen dem Schutz der Bevolkerung vor den unerwiinschten gesundheitlichen Wir-
kungen elektromagnetischer Strahlung. Der Ableitung von Grenzwerten kommt daher eine grofie
Bedeutung zu. Bei der Festlegung von Grenzwerten miissen daher in erster Linie reproduzierbare
biologische und gesundheitliche Wirkungen berticksichtigt werden. Dabei muss aber berticksich-
tigt werden, dass Grenzwerte immer auch statistischer Natur sind, d. h. das Auftreten eines
Effekts kann zwar mit groBer Sicherheit aber nicht génzlich ausgeschlossen werden. Sicherheit
wird dadurch als Akzeptanz eines kleinen Restrisikos verstanden. Im Gegensatz zu ionisierender
Strahlung werden bei der elektromagnetischen Wechselwirkung mit dem menschlichen Korper
Schwellenwirkungen betrachtet, da zum Auslosen einer Wirkung z. B. eine Reizschwelle iiber-
schritten werden muss. Bei ionisierender Strahlung kann schon das Auftreffen eines einzelnen
Energiequants zu einer Schidigung der DNA fiihren. Im Gegensatz dazu ist die Warmeentste-
hung durch hochfrequente elektromagnetische Felder so lange ungefidhrlich, wie sie durch ther-
moregulatorische Mechanismen des menschlichen Kérpers ausgeglichen werden kann. Aus diesem
Grund ist fiir die Erwdrmung von Gewebe durch hochfrequente elektromagnetische Felder die
Angabe eines Grenzwertes addquat.

Als Beispiel hierfiir sei eine Untersuchungen zur Festlegung der Reizschwelle fiir eine Muskelsti-
mulation geschildert (GEDDES, 1995). In einem Stimulationsexperiment wird z. B. festgestellt,
dass bei einer Stimulation mit Wechselspannung im niederfrequenten Bereich zwischen 10 Hz
und 1 kHz ab einer Stromdichte von 100 mA/m? bei den Probanden Stimulationseffekte der
Muskulatur der Extremititen auftreten. Untersucht man nun eine grofle Anzahl von Proban-
den, so ergibt sich eine Normalverteilung der gemessenen Stimulationsschwellen, die um einen
Mittelwert streuen. Um sicher zu gehen wird man z. B. als Grenzwert zunéchst die kleinste
ermittelte Stromdichte von 100 mA/m? verwenden. Der Grenzwert muss daher mindestens so
gewahlt werden, dass eine Person unter normalen Umstinden in kein elektromagnetisches Feld
gelangen darf, welches eine Stromdichte in dieser Grofle im Koérper induziert.

Da die Anzahl der Probanden nur eine Stichprobe aus der Gesamtbevilkerung umfasst ist es
aber nicht ausgeschlossen, dass es Personen gibt, deren Reizschwelle noch unterhalb der im
Experiment ermittelten kleinsten Schwelle liegt. Je besser und gréfler die Personengruppe im
Experiment gew#hlt wird, desto zuverldssiger sind die Aussagen beziliglich des Grenzwertes und
desto kleiner ist das Risiko bei Einhalten des Grenzwertes bei einer anderen Person doch eine un-
erwiinschte Stimulation zu erzeugen. Dennoch kann ein Restrisiko nicht ausgeschlossen werden.
Um dieses zu minimieren, werden anhand der ermittelten Schwellenwerte Sicherheitsabstinde
eingefiihrt. Ublicherweise wird der so ermittelte Grenzwert noch durch die Zahl 10 als Sicher-
heitsfaktor dividiert. So erh&lt man fiir die maximal zuléssige Stromdichte einen Grenzwert von
10 mA /m? fiir die zeitweise Exposition von arbeitenden Personen. Fiir die Allgemeinbevélkerung
wird zusédtzlich ein weiterer Sicherheitsfaktor von fiinf, also insgesamt der Faktor 50, beriicksich-
tigt, was eine maximal zuléissige Stromdichte von 2 mA/m? ergibt (ICNIRP, 1998).

Der hier beschriebene experimentelle Vorgang ist nur eine Moglichkeit der Grenzwertfindung.
Daneben existieren noch die epidemiologischen Studien bei denen Menschen aufgrund ihrer
Lebensgeschichte oder Arbeitsbedingungen in Gruppen eingeteilt werden und versucht wird
Effekte der Feldexposition bei den einzelnen Gruppen nachzuweisen und gegen andere Gruppen
abzugrenzen. Epidemiologische Studien beziehen sich unter anderem oft auf die Gefihrdung am
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Arbeitsplatz bestimmter Berufsgruppen durch elektromagnetische Strahlung, Krebsrisiken bei
Bevoélkerungsgruppen in der Nahe elektrischer Anlagen oder Gesundheitsrisiken flir schwangere
Frauen. Oftmals werden in epidemiologischen Studien aus beobachteten zufélligen Korrelationen
scheinbare Kausalzusammenhénge abgeleitet, ohne andere relevante belastende Faktoren mit in
die Studie miteinzubeziehen. Dabei ist eine Abgrenzung der beobachteten Effekte gegentiber
anderen Ursachen sehr schwer. Dies dient auch oft als Hauptkritikpunkt bei der Beurteilung der
Aussagekraft einzelner Studien.

Andere Methoden, Grenzwerte abzuleiten, beinhalten wie bereits geschildert Studien an freiwil-
ligen Testpersonen aber auch an Tieren oder Zellkulturen. Daneben ergeben auch numerische
Experimente weitere Hinweise zur Ableitung und Festlegung von Grenzwerten.

Die Festlegung von Grenzwerten ist ein dynamischer Prozess, da die aktuell gliltigen Grenzwerte
immer an die neuesten wissenschaftlichen Erkenntnisse angepasst werden miissen. Im Jahr 1998
verdffentlichte die Internationale Kommission zum Schutz vor nicht-ionisierender Strahlung (IC-
NIRP) umfassende Richtlinien, die als Grundlage fiir die aktuell giiltigen Grenzwerte dienen. In
dieser Studie sind in einem umfassenden Literaturteil alle relevanten Arbeiten zur Problematik
beschrieben und bewertet. Ausgehend von den Ergebnissen dieser Autoren wurden Grenzwerte
in einem Frequenzbereich von 0 Hz bis 300 GHz definiert. Dabei wurden allerdings nur aner-
kannte biologische und gesundheitliche Wirkungen beriicksichtigt, wie z. B. die Stimulation von
Muskel- und Nervengewebe und die Erwidrmung von Gewebe durch Energieabsorption. Mégliche
Langzeiteffekte wie z. B. ein erhdhtes Krebsrisiko, wurden bei der Festlegung der Grenzwerte
aufler acht gelassen, da nach Meinung der ICNIRP zu wenig gesicherte Erkenntnisse zu diesen
moglichen Wirkungen vorliegen.

In dieser Studie wird zwischen Basisgrenzwerten und Referenzwerten unterschieden. Die Basis-
grenzwerte geben Grenzwerte fiir die zuldssige Stromdichte J sowie die spezifische Absorpti-
onsrate SAR an, da diese beiden Gréflen direkt fiir die biologischen Wirkungen verantwortlich
sind, wie in den Abschnitten 4.2.2 und 4.2.3 bereits begriindet wurde. Die Referenzwerte stellen
aus diesen Basisgrenzwerten abgeleitete Werte fiir die elementaren physikalischen Gréfien elek-
trisches Feld F und magnetische Flussdichte B dar, die primér nicht fiir eine Beurteilung der
physiologischen Auswirkungen geeignet sind.

Die Angabe von Referenzwerten bringt aber auch einige Schwierigkeiten mit sich, da elektro-
magnetische Felder in unterschiedlichen Personen aufgrund der Streuung in den physiologischen
Parametern verschiedene Stromdichten und Leistungsabsorptionen ergeben. Ein Uberschreiten
der Referenzwerte bei der Exposition von Personen ist somit prinzipiell méglich. Dies ist aber
nur dann zuléssig, wenn sichergestellt werden kann, dass die Basisgrenzwerte trotz allem nicht
tiberschritten werden.

Bei der Angabe von Grenzwerten wird in der Regel zwischen beruflich exponierten Personen, die
nur zeitweise einer erhShten Feldstirke, und der Allgemeinbevdlkerung, die stdndig einem Feld
ausgesetzt sein kann, unterschieden. Bei arbeitenden Personen wird davon ausgegangen, dass
diese sich der Exposition bewusst sind und auch entsprechende Vorsichtsmassnahmen aufgrund
ihrer speziellen Ausbildung einhalten. Bei der Allgemeinbevélkerung muss davon ausgegangen
werden, dass diese Personen sich unbeabsichtigt, unbewusst und dauerhaft in einem elektroma-
gnetischen Feld aufhalten und eventuell sogar gesundheitlich eingeschrinkt sein kénnen, was die
Empfindlichkeit gegentiber gesundheitlichen Wirkungen noch erhéhen kann.

Diesen Umsténden ist daher durch einen grofleren Sicherheitsfaktor fiir die Allgemeinbevélke-
rung Rechnung zu tragen. Die ICNIRP schligt neben dem Sicherheitsfaktor von 10 fiir die
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arbeitende Bevolkerung einen zusitzliche Faktor von 5 fiir die Allgemeinbevolkerung bei der
Festlegung von Grenzwerten vor. In den nichsten beiden Abschnitten werden fiir die Strom-
dichte, die spezifische Absorptionsrate sowie den daraus abgeleiten Groen elektrisches Feld und
magnetische Flussdichte die gidngigen Grenzwerte fiir beruflich exponierte Personen, sowie fiir
die Allgemeinbevolkerung angegeben.

4.3.2 Grundlegende Basisgrenzwerte

Abbildung 4.4 gibt die maximal zuléssigen Werte fiir die Stromdichte im menschlichen Koérper
an. Ausgehend von beobachteten Stimulationseffekten wurden die experimentell bestimmten
Stromdichten durch einen Sicherheitsfaktor von 10 dividiert und so die Stromdichtegrenzwerte
fiir beruflich exponierte Personen bestimmt, wie bereits in Abschnitt 4.3.1 beschrieben. Werden
diese Grenzwerte eingehalten, so ist eine Stimulation von Muskel- und Nervengewebe im beruf-
lichen Umfeld so gut wie ausgeschlossen. Fiir die Allgemeinbevilkerung wurde noch ein zusétz-
licher Sicherheitsfaktor von 5 beriicksichtigt, durch die die Grenzwerte fiir beruflich exponierte
Personen dividiert wurden um so die Grenzwerte fiir die Allgemeinbevélkerung zu erhalten.

In Abschnitt 4.2.2 wurden die grundlegenden Mechanismen fiir eine Stimulation von Muskel-
und Nervengewebe erldutert. Die Grenzwerte tragen den physiologischen Vorgingen Rechnung,
da im Bereich von einigen Hertz bis Kilohertz die zuléssigen Stromdichtewerte am niedrigsten
sind. Ab einer Stimulationsfrequenz von 10 MHz werden keine Grenzwerte mehr angegeben, da
ab dieser Frequenz keine Stimulationseffekte mehr zu erwarten sind.

Fiir elektromagnetische Felder mit hoheren Frequenzen bis zu 10 GHz werden Grenzwerte fiir
die spezifische Absorptionsrate SAR angegeben (vgl. Abschnitt 4.2.3). Fiir die SAR werden
ab 100 kHz Grenzwerte angegeben. Damit wird der Tatsache Rechnung getragen, dass es im
Frequenzbereich von 100 kHz bis 10 MHz zu Stimulationseffekten und Erwirmungen kommen
kann. In diesem Frequenzbereich miissen daher die Grenzwerte fiir die Stromdichte und die
spezifische Absorptionsrate eingehalten werden.

Die angegebenen maximal zuldssigen Werte fiir die SAR orientieren sich an einer durchschnitt-
lichen Ganzkorperbelastung mit 4 W/kg {iber einen Zeitraum von 30 min. Dabei wirmt sich
ein menschlicher Kérper um ca. 1°C auf, was eine gerade noch tolerierbare Belastung fiir den
menschlichen Organismus darstellt. Bei der Ableitung von einem Basisgrenzwert wird daher von
einer durchschnittlichen Belastung von 4 W /kg ausgegangen und dieser Wert fiir beruflich ex-
ponierte Personen zuerst durch 10 dividiert, um so eine durchschnittliche Ganzkérperbelastung
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von 0,4 W/kg zu erhalten. Eine zusétzliche Division durch 5 ergibt fiir die Allgemeinbevélkerung
einen Grenzwert von 0,08 W/kg. Die angegebenen Werte fiir die SAR stellen Durchschnittswerte
dar und miissen nach den Vorschriften der ICNIRP iiber einen Zeitraum von 6 min gemittelt
werden.

Um das Auftreten von grofien lokalen Energiedepositionen im Korper zu vermeiden gelten neben
den Ganzkoérpergrenzwerten fiir die SAR auch ,lokale“ Grenzwerte fiir den Kopf und den Rumpf,
sowie die Extremititen. Dabei ist in einem Zeitraum von 6 min iiber ein zusammenhingendes
Stilick Gewebe mit jeweils einer Masse von 10 g die gemittelte SAR zu bestimmen. Dies ist {iber
den gesamten Korperteil durchzufiihren. So sind die Werte fiir die lokale spezifische Absorpti-
onsrate zu ermitteln. Keiner dieser Werte darf im Kopf oder Rumpf bei beruflich exponierten
Personen iiber 10 W/kg und bei der Allgemeinbevélkerung iiber 2 W/kg liegen. Bei den Extre-
mitéten liegen diese Werte bei 20 W /kg fiir beruflich exponierte Personen und bei 4 W /kg bei
der Allgemeinbevolkerung.

Andere Darstellungen geben neben der SAR die tolerierbare Temperaturerh6hung als Mafl fiir
die Auswirkung eines elektromagnetischen Feldes an. In diesen Richtlinien wird eine Dauer-
erwarmung des Korpers um maximal 1°C pro Stunde Expositionsdauer bei einer mittleren Lei-
stungsabsorption von 1 W/kg als thermoregulatorisch tolerabel angenommen. Neben der SAR
wird die absolut erzielte Temperaturerh6hung im Gewebe als Grenzwert angegeben, was fiir
einen Vergleich mit den Ergebnissen des thermodynamischen Algorithmus geeigneter ist. Da-
bei werden z. B. bei der MR-Tomographie Temperaturerhhungen im Bereich des Kopfes von
1°C absolut bei gesunden Personen als tolerabel angesehen (IRPA, 1991). Der Wert muss bei
kreislaufschwachen Personen, Kindern und Schwangeren auf 0,5°C absolut reduziert werden. Fiir
andere Kérperteile, z. B. die Extremitéten kénnen auch hdhere Erwirmungen akzeptiert werden,
solange die Kérpertemperatur nicht generell iber 1°C ansteigt und so das thermoregulatorische
System {iiberlastet. Fiir die angegebenen Temperaturgrenzwerte existieren auch die Sicherheits-
faktoren von 10 fiir die arbeitende Bevélkerung und von 5 fiir die Allgemeinbevolkerung. Dies
ergibt unter Annahme einer maximal zulédssigen Erwirmung von z. B. 1°C zulédssige Werte von

0,1°C und 0,02°C (ICNIRP, 1998).

Generell gilt, dass die Ganzkérpergrenzwerte, die Grenzwerte fiir die lokale Leistungsabsorption
und eventuell in Abh&ngigkeit von der betrachteten Frequenz die Grenzwerte fiir die Stromdichte
gleichzeitig eingehalten werden miissen. Bei gepulsten Vorgédngen muss eine dquivalente Frequenz
berechnet werden nach f =1/(2-t,,,) und die Grenzwerte gem#f dieser Frequenz angewendet

werden (ICNIRP, 1998).

4.3.3 Abgeleitete Referenzwerte

Aus den Basisgrenzwerten, die direkt mit biologischen und gesundheitlichen Wirkungen im
menschlichen Korper gekoppelt sind, lassen sich fiir weitere physikalische Gréflen Grenzwerte ab-
leiten, die Referenzwerte genannt werden. Abbildung 4.5 gibt die maximal zuléssigen effektiven
Feldstarkewerte fiir das elektrische Feld und die magnetische Flussdichte im Frequenzbereich von
1 Hz bis 300 GHz an. Dabei sind wiederum hdhere Grenzwerte fiir beruflich exponierte Personen
zuléssig.

Die aus den Basisgrofien abgeleiteten Referenzwerte dienen als Richtschnur fir die zuldssigen
Feldstirken. Ein Uberschreiten der Referenzwerte ist zuldssig, solange sichergestellt wird, dass
die Referenzwerte auf jeden Fall eingehalten werden. Dazu werden in den Richtlinien der ICNIRP
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Abbildung 4.5: Referenzwerte fiir die maximal zuldssige Starke des elektrischen Feldes und der ma-

gnetischen Flussdichte fiir beruflich exponierte Personen (rote Kurve) und die Allgemeinbevdlkerung

(blaue Kurve) nach den Richtlinien der ICNIRP (1998) im Frequenzbereich von 1 Hz bis 300 GHz.

Diese Referenzwerte leiten sich aus den Basisgrenzwerten fiir die Stromdichte und die spezifische
Absorptionsrate ab.

(1998) weitere Angaben gemacht und zusétzlich fiir das elektrische Feld und die magnetische
Flussdichte zulassige Spitzenwerte angegeben, die bei Einhaltung der Referenzwerte kurzzeitig
moglich sind. Dariiber hinaus werden Grenzwerte fiir weitere physikalische Gréflen, z. B. der
Energiedichte bei Frequenzen iiber 10 GHz, sowie Erlduterungen und Begriindungen tber die
Wahl und Festlegung der Grenzwerte und eine umfassende Literaturzusammenstellung angege-
ben.

Fiir die medizinische und physiologische Bewertung der Auswirkung elektromagnetischer Strah-
lung sind diese Referenzwerte allerdings von untergeordneter Bedeutung. Bei der Auswertung
numerischer Modelle wird daher aus den berechneten elektrischen Feldern immer die SAR nach
Gleichung (4.7) oder die Stromdichte nach Gleichung (3.3) bestimmt, um dann die moglichen
Wirkungen abzuschétzen. Weiterhin interessiert auch die absolute Temperaturerhhung durch
die Leistungsabsorption aus dem elektromagnetischen Feld, die mit Hilfe von Gleichung (4.8)
grob abgeschitzt oder mit Hilfe eines thermodynamischen Losealgorithmus in einem weiteren
numerischen Schritt berechnet werden kann.
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4.4 Zusammenfassung

In diesem Kapitel wurden die Wirkungen elektromagnetischer Felder auf biologisches Gewebe
im allgemeinen und den menschlichen K&rper im speziellen vorgestellt. Dabei wurden nur die
wissenschaftlich abgesicherten Effekte der Stimulation von Muskel- und Nervengewebe sowie die
Erwidrmung von Gewebe durch die Absorption von Leistung aus dem elektromagnetischen Feld
diskutiert. Andere Effekte wurden nicht n&her betrachtet, da sie nicht mit den numerischen
Methoden, die in dieser Arbeit verwendet werden, erfasst und bewertet werden konnen.

Es wurde gezeigt, wie die elementaren numerischen Ergebnisse weiterverarbeitet werden miissen,
damit eine Bewertung hinsichtlich der physiologischen Auswirkung eines elektromagnetischen
Feldes moglich ist. Im einzelnen sind das die Berechnung der induzierten Stréme und der absor-
bierten Energiemenge aus dem elektromagnetischen Feld, die aus der Lésung des elektrodynami-
schen Feldproblems, welches als komplexe elektrische Feldverteilung vorliegt, berechnet werden
miissen.

Zur abschliefenden Bewertung der berechneten physiologisch relevanten Gréflen Stromdichte
und Leistungsabsorption ist ein Vergleich mit den giiltigen Grenzwerten notwendig. Dazu wurde
ein Einfiihrung in die generelle Ableitung von Grenzwerten gegeben und die gingigen Grenzwerte
und ihre Anwendung zur Beurteilung von numerischen Simulationsergebnissen vorgestellt, sowie
auf die besonderen Unterschiede zwischen Basisgrenzwerten und Referenzwerten hingewiesen.
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Teil 11

MODELLE UND ERGEBNISSE
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Kapitel 5

Numerische Voruntersuchungen

5.1 Einfithrung

Durch die Vielzahl der einstellbaren Parameter der Losealgorithmen in den einzelnen Modu-
len von MAFIA ist es notwendig, die optimale Parametereinstellung in numerischen Vorunter-
suchungen zu ermitteln, um fiir alle simulierten Szenarien die gleichen optimalen Bedingungen
zu gewdhrleisten. Diese Voruntersuchungen werden zweckmifBigerweise an einfachen Modellen
durchgefiihrt, da eine Vielzahl an Simulationsldufen notwendig ist, um verschiedene Parameter-
kombinationen zu testen.

Im folgenden Unterkapitel wird zunéchst auf die Konvergenzeigenschaften der Losealgorithmen
des Frequenzbereichslésers W3 eingegangen. Dabei werden anhand eines Testbeispiels die opti-
malen Parametereinstellungen fiir die Losealgorithmen ermittelt.

Danach folgt eine Gegeniiberstellung von expliziter und impliziter Zeitintegration des thermody-
namischen Moduls H3 und zur Validierung der Rechengenauigkeit ein Vergleich der numerischen
Ergebnisse mit einer analytischen Referenzlosung. SchlieBlich wird in einem eigenen Unterkapitel
die Moglichkeit, mit der adaptiven Zeitschrittsteuerung Rechenzeit einzusparen, genauer unter-
sucht.

5.2 Konvergenzverhalten der Frequenzbereichsléser

In diesem Unterkapitel werden die Parameter vorgestellt, die einen entscheidenden Einfluss auf
das Konvergenzverhalten der Frequenzbereichsloser hat. Einige Parameter sind durch die Art des
Problems bereits festgelegt, andere kénnen frei gewihlt werden. Insbesondere die freie Wahl von
Parametern bereitet einige Schwierigkeiten, da bisher keine Erfahrungswerte fiir eine optimale
Konfiguration vorliegen. Aus diesem Grund miissen die Auswirkungen auf die Konvergenzge-
schwindigkeit, die sich durch die Wahl der freien Parameter ergeben, in einer eigenen numerischen
Studie untersucht werden.

Im folgenden Abschnitt wird zunéchst die Auswahl der Systemgleichung und der Lésealgorith-
men aus der Menge der zur Verfiigung stehenden Gleichungen und Algorithmen anhand der
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Abbildung 5.1: Einfaches Kérpermodell fiir
die Analyse des Konvergenzverhaltens der
einzelnen Ldsealgorithmen des Frequenzbe-
reichslosers W3. Das Modell besteht aus
tiber 500 000 Knotenpunkten. Die Feldanre-
gung wird mit einem Helmholtzspulenpaar
realisiert in Anlehnung an die numerischen
Modelle zur Simulation des Hochfrequenz-
feldes bei der Magnetresonanztomographie.

modellbedingten Vorgaben begriindet. Daran schliesst sich eine ndhere Betrachtung der Vorkon-
ditionierungsmoglichkeiten der Systemmatrix an, gefolgt von einer Diskussion der Problematik
durch Reflexionen am Rand des Rechenvolumens, welche sich durch die Annahme offener Rand-
bedingungen ergeben, sowie einiger Moglichkeiten, diese zu minimieren. Zwei weitere Parameter,
die die Konvergenzgeschwindigkeit beeinflussen, sind die interne Genauigkeit der Gleikomma-
zahlendarstellung und die lokale Verfeinerung der rdumlichen Diskretisierung durch Variation
der Gitterschrittweite. Sie werden in einem eigenen Unterabschnitt diskutiert.

Bei der Durchfiihrung numerischer Testsimulationen miissen auch die Moglichkeiten zur Kon-
trolle der numerischen Ldsungen genauer betrachtet werden. Dabei werden verschiedene Kon-
trollfunktionen vorgestellt und auf ihre Zuverldssigkeit hin bewertet. Danach folgt eine Betrach-
tung von Rechenzeit und Speicherbedarf fiir die verschiedenen Algorithmen. Diese beiden Pa-
rameter beeinflussen zwar nicht die Konvergenzgeschwindigkeit, sind aber vor der numerischen
Simulation wichtig, um den Aufwand und die Dauer einer Modellrechnung abzuschétzen.

Aus den diskutierten Parametern wurden insgesamt 24 Kombinationen zusammengestellt, die in
numerischen Testldufen miteinander verglichen wurden. Die Ergebnisse dieser Testldufe fithren
dann zu einer Aussage liber die optimale Parameterwahl zur Lésung numerischer Probleme
mit verlustbehafteten Modellen des menschlichen Korpers. Diese schlielen mit einer expliziten
Angabe der Parameter dieses Unterkapitel ab.

Als Testmodell dient ein inhomogenes Modell des menschlichen Kérpers in einem einfachen
Helmholtzspulensystem, welches in Anlehnung an die in Kapitel 6 verwendeten Modelle erstellt
wurde. Abbildung 5.1 zeigt eine dreidimensionale Darstellung des Modells. Das diskrete Git-
ternetz besteht aus 531441 Knoten und verfligt iiber eine dquidistante Gitterschrittweite von
25 mm. Die dielektrischen Parameter der verwendeten Korpergewebe wurden der Anregungsfre-
quenz entsprechend ausgewihlt. Die Feldanregung wird mit dem Helmholtzspulenpaar realisiert,
durch das ein beliebiger Stromfluss definiert werden kann. Die Simulationen wurden fiir maximal
5000 Iterationsschritte durchgefiihrt oder vorher abgebrochen, wenn ein Residuum von kleiner
10~% erreicht wurde. An den Rindern des Rechenvolumens wurden offene Randbedingungen
angenéhert.
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5.2.1 Auswahl der Systemgleichung und des L&sealgorithmus

Im Modul W3 des Frequenzbereichslosers stehen in der Programmversion 4.106 insgesamt
acht verschiedene Losealgorithmen zur Verfligung. Die Auswahl eines Ldsealgorithmus ist
von der Problemstellung abhingig. Fiir die acht Algorithmen stehen drei verschiedene Glei-
chungen zur Verfiigung, mit denen das Feldproblem gel6st werden kann. Zum einen ist das
die diskrete Curl-Curl-Eigenwertgleichung (2.30), sowie zwei Formen der davon abgeleiteten
Helmholtz-Eigenwertgleichung. Weitere Moglichkeiten ergeben sich durch die Auswahl einer
Aquilibrierungsstrategie der Systemmatrix, bei der eine Verbesserung der Konditionszahl X(A)
angestrebt wird, was die Konvergenzgeschwindigkeit des numerischen Verfahrens deutlich be-
schleunigen kann (HACKBUSCH, 1990).

Ziel jeder numerischen Voruntersuchungen muss es sein, aus der Vielfalt der moglichen Kom-
binationen aus Algorithmus, Gleichung und Vorkonditionierung der Systemmatrix durch Vor-
konditionierungsstrategien diejenigen auszuwéhlen, die am besten fiir die Losung der gestellten
Probleme geeignet sind. Aufgrund der grundlegenden KEigenschaften einiger Algorithmen und
Gleichungen erweist sich eine Vielzahl an Kombinationen a priori als ungeeignet. Diese bediirfen
daher keiner eingehenden Betrachtung, was z. B. bei den hier betrachteten verlustbehafteten
Modellen mit endlicher Leitfihigkeit und offenen Randbedingungen der Fall ist.

Eine Einschrankung ergibt sich fiir die in Frage kommende Eigenwertgleichung. Wie in Abschnitt
2.3 begriindet, eignet sich nur die diskrete Curl-Curl-Eigenwertgleichung (2.30) fiir die Losung
der numerischen Probleme in dieser Arbeit. Die beiden Helmholtz-Gleichungen scheiden aus, da
sie auf der einen Seite einen deutlich gréfleren Speicherplatz bendtigen und auf der anderen Seite
bei der Anwendung auf Probleme mit endlicher Leitfdhigkeit beziiglich ihrer Konvergenzeigen-
schaften keinen Vorteil gegeniiber der Curl-Curl-Eigenwertgleichung besitzen. Bei den folgenden
numerischen Voruntersuchungen wird daher nur die diskrete Curl-Curl-Eigenwertgleichung n&her
betrachtet.

Aus der Vielzahl der Lo&sealgorithmen wurden drei Algorithmen ausgew&hlt. Dies sind das
COCGSSOR-, das PSBCGR- und das PQMR-Verfahren (vgl. auch mit Abschnitt 2.3.4).
Die anderen verfiigbaren Algorithmen scheiden aus, da sie nur fiir verlustfreie Probleme geeignet
sind oder keine Niherung fiir offene Randbedingungen besitzen (MAFIA, 2000B). Ein weiterer
Vorteil dieser Verfahren ist, dass sie bereits liber integrierte Vorkonditionierungsstrategien der
Systemmatrix verfiigen, die im n#ichsten Abschnitt ausfiihrlicher vorgestellt werden.

5.2.2 Moglichkeiten der Vorkonditionierung

Eine Vorkonditionierung oder Aquilibrierung der Systemmatrix kann eine Verbesserung der Kon-
vergenzgeschwindigkeit des Gleichungssystems erzeugen, wenn durch diese Mafinahme die Kondi-
tionszahl der Systemmatrix verringert wird (siehe z. B. bei HAHNE). Es ist aber durchaus méglich
durch ungeschickte Wahl der Vorkonditionierungsmethode die Systemmatrix zu defquilibrieren
und damit die Konvergenz deutlich zu verschlechtern. Der Auswahl der Vorkonditionierungs-
methode ist daher im Rahmen numerischer Voruntersuchungen besondere Aufmerksamkeit zu
widmen.

Es bieten sich mehrere Moglichkeiten der Vorkonditionierung an. Bei der einfachen Méoglichkeit
der Skalierung wird das lineare Gleichungssystem A -X = b durch eine Transformation in das
Gleichungssystem B -y = € iiberfiihrt. Dabei werden zwei Matrizen K; und Ky eingefiihrt, so
dass gilt (HAHNE, 1992):
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B=K; A-K;, y=K;' %, ¢=K;-b.

Im einfachsten Fall sind Ky und K2 Diagonalmatrizen.

Eine andere Moglichkeit ist, die Systemmatrix in Dreiecksmatrizen zu zerlegen, was auch unwvoll-
stindige Dreieckszerlegung oder ILU-Zerlegung genannt wird. Beide Strategien werden ausfiihr-
lich von HAHNE (1992) diskutiert.

Der PSBCGR- und der PQMR-Algorithmus verwenden die sogenannte Jacobi-
Vorkonditionierung (SAAD, 1995), die im Prinzip einer einfachen Skalierung entspricht.
Hierbei wird die Systemmatrix A mit ihrer eigenen Diagonalmatrix skaliert. Dabei werden die
Matrizen K7 und Ko definiert als:

K; =diag(A), Ky=K;!.

Die Jacobi-Vorkonditionierung wird daher auch als Diagonalskalierung bezeichnet.

Der COCGSSOR-Algorithmus verwendet als Vorkonditionierung das Verfahren der sukzessiven
symmetrischen Uberrelazation, das auch als SSOR-Verfahren bezeichnet wird. Hierbei wird die
Systemmatrix A in eine untere und obere Dreiecksmatrix (E und F) und eine Diagonalmatrix
D zerlegt und durch die daraus konstruierte Matrix H angen&hert, so dass gilt (HAHNE, 1992):

Ax~H-= (i-EJr—-D) -wg-D—l.(i-FJri-D)

W1 Wa w1 w9

Die Wahl der Parameter w; und wo beeinflussen die Konvergenzgeschwindigkeit des Losealgo-
rithmus. Ist w; = wy = 1 so heiflit das Verfahren symmetrische Gauf-Seidel- Vorkonditionierung
und ist Teil des COCGSSOR-Losealgorithmus. Optimale Werte kénnen aber nicht a priori ab-
geleitet werden, sondern miissen in praktischen Versuchen ermittelt werden (HAHNE, 1992).
Das SSOR-Verfahren konvergiert aber nur dann, wenn fiir die Parameter w; und ws Werte im
Intervall [0,2] gew#hlt werden (KAHAN, 1958).

Auf den ersten Blick empfiehlt sich eine Skalierung als Vorkonditionierung insbesondere bei
sehr unterschiedlichen Gitterschrittweiten und inhomogenen Materialverteilungen wie bei den
hier betrachteten numerischen Modellen, da dann die urspriingliche Systemmatrix mit sehr ver-
schieden groflen Zahlen besetzt ist, was zu einer groflen Konditionszahl und damit zu schlech-
ten Konvergenzgeschwindigkeiten fiihrt. Allerdings haben bereits die numerischen Experimente
von HAHNE (1992) gezeigt, dass diese Aussage keine allgemeine Giiltigkeit besitzt. Insbeson-
dere zeigte die SSOR-Vorkonditionierung bei verlustbehafteten Problemen mit unterschiedlichen
Gitterschrittweiten Nachteile gegeniiber einfachen Skalierungsverfahren, wie z. B. der Jacobi-
Vorkonditionierung. Dies wurde auch bei den unten aufgefiihrten numerischen Experimenten
deutlich.

Ob eine Vorkonditionierung positive oder negative Eigenschaften beziiglich der Konvergenzge-
schwindigkeit des Losealgorithmus zeigt, muss daher in jedem Einzelfall tiberpriift werden.
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5.2.3 Probleme der offenen Randbedingung

Bereits in Kapitel 2.3 wurde die Problematik der Wahl der Randbedingungen angesprochen.
Neben den einfachen Féllen, ideal elektrisch oder magnetisch leitende Rinder anzunehmen, gibt
es die Moglichkeit, offene Randbedingungen zu wihlen, die einen reflexionsfreien Anschluss des
Rechenvolumens an den freien Raum simulieren. Dies bedeutet, dass Wellen, die auf den Rand
des Rechengebietes auftreffen, reflexionsfrei absorbiert werden. Eine algebraische Darstellung
der numerischen Implementation dieser Randbedingung als Differentialgleichungssystem erster
Ordnung findet sich bei VAN RIENEN UND WEILAND (1988) und VAN RIENEN UND WEILAND
(1990).

Aufgrund der hier betrachteten Szenarien ist es zweckméissig, an den Réndern der betrachteten
Rechenvolumina die offenen Randbedingungen anzunehmen, um so die Problemsituationen aus
der medizinischen Praxis am besten wiederzugeben. Die Verwendung dieser Randbedingung ist
aber nicht unproblematisch, da sie nicht vollkommen reflexionsfrei ist. So ist eine ausreichen-
de Reflexionsfreiheit nur fiir die senkrecht einfallenden Wellenanteile gewihrleistet (MAFIA,
2000B).

Um diese Probleme in den Griff zu bekommen, empfiehlt es sich, den Abstand zwischen der
modellierten Struktur und dem Rand des Rechenvolumens geniigend grof zu wihlen. Uber die
absolute Grofle des Abstandes werden in der entsprechenden Literatur keine konkreten Angaben
gemacht, da jede Vergroflerung des Abstandes zwischen modellierter Struktur und Rand mit
zusdtzlichen Gitterknoten erkauft werden muss und dies den Speicherbedarf und die Rechenzeit
deutlich erhht. Im praktischen Fall sind flir gewShnlich Kompromisse notwendig.

Da es keine festen Regeln bezliglich des Abstandes zwischen Modell und Rand gibt, sind im
Einzelfall jeweils zusétzliche Voruntersuchungen notwendig. Dabei hat sich gezeigt, dass ein Ab-
stand von zehn, minimal flinf Gitterzellen zwischen Modell und Rand noch akzeptable Ergebnis-
se ergibt. Falls gentigend Speicherplatz und Rechenzeit zur Verfligung steht, dann ergeben die
Abstéinde vom Rand, die mehr als eine Wellenl&nge der anregenden Frequenz betragen, die besten
Ergebnisse. Aus diesen Erfahrungswerten folgt, dass der zur Verfligung stehende Speicherplatz
zur Verbesserung der Konvergenzgeschwindigkeit und Ldsungsqualitit zu einer Vergréflerung
des Modellabstandes zum Rand verwendet werden sollte.

5.2.4 Interne Zahlendarstellung und Gitterverfeinerung

Eine weitere Moglichkeit, die Konvergenzgeschwindigkeit zu beeinflussen, ist die Auswahl der
internen numerischen Genauigkeit. Das Programmpaket MAFIA bietet die Moéglichkeit mit ein-
facher oder doppelter Genauigkeit (single oder double precision) zu rechnen. Dabei werden pro
gespeicherter Gleitkommazahl entweder vier oder acht Byte verwendet.

Die Verwendung von doppelter Genauigkeit empfiehlt sich generell bei numerischen Problemen
mit groflen Schrittweitenunterschieden und inhomogenen Materialverteilungen (HAHNE, 1992).
Allerdings ist der Speicherbedarf dann doppelt so grofi, was die Zahl der moglichen Gitterkno-
tenpunkte halbiert und damit die rdumliche Diskretisierung und Auflésung einschrinkt. Daher
sind oft Kompromisse notig.

Da dieser Parameter einen entscheidenden Einflufi auf die Konvergenzgeschwindigkeit haben
kann, wurden im Rahmen der numerischen Voruntersuchungen alle Simulationen sowohl in ein-
facher, als auch in doppelter Genauigkeit durchgefiihrt.
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Die Gesamtanzahl der Gitterknoten eines numerischen Modells wird in erster Linie durch den
verfiigbaren oder durch das Programm verwaltbaren Speicherplatz beschrinkt. Durch diese Ein-
schrinkungen ergeben sich Grenzen fiir die Modellierung und die Komplexitidt eines Modells.
Eine zweite Einschriankung ergibt sich durch den Anstieg der Rechenzeit bei einer Zunahme der
Gitterknoten.

Um Gitterknoten einzusparen gibt es daher die Moglichkeit, ein Gitternetz mit unterschied-
lichen Gitterschrittweiten zu verwenden. Dadurch ist es mdglich an Stellen des Modells von
besonderem Interesse, z. B. an der Spitze einer implantierten Elektrode, feiner aufzuldsen. An
den Réndern des Modells kann eine grobe Auflgsung gew#hlt werden, um den in Abschnitt 5.2.3
angesprochenen Problemen bei Verwendung der offenen Randbedingung zu begegnen. Abbil-
dung 2.2 zeigt diese Moglichkeit der Gitterverfeinerung an einem hochaufgelésten Modell des
menschlichen Kopfes.

Weiterhin empfiehlt sich eine Verfeinerung des Gitters bei Ubergéingen von Materialien mit sehr
unterschiedlichen dielektrischen Eigenschaften, da es hier zu groflen Spriingen in den Feldgréflen
kommen kann. Mit ein Grund dafiir sind die in Abschnitt 2.2.1 angesprochenen N&herungsmatri-
zen, die als lineare Approximatoren fiir die FeldgroBen bei Ubergiingen zwischen verschiedenen
Materialien dienen. Eine Verfeinerung des Gitters kann hier zu einer Verbesserung der Konver-
genzgeschwindigkeit fiihren.

Dies gilt aber nicht unbegrenzt, da durch jede Verfeinerung die Konditionszahl der Systemma-
trix erhdht wird, was wiederum zu einer Verschlechterung der Konvergenz fiihrt, wie auch in
Abschnitt 5.2.2 beschrieben wird. Diese Verschlechterung der Konvergenz kann auch durch eine
zusdtzliche Vorkonditionierung der Systemmatrix nicht vollstdndig ausgeglichen werden. Bei der
Gitterverfeinerung ist daher darauf zu achten, dass der durch die Gitterverfeinerung gewonnene
Vorteil nicht durch eine zu grofle Verfeinerung wieder zunichte gemacht wird.

Da keine festen Regeln fiir die optimale Gitterverfeinerung abgeleitet werden kénnen, muss die
optimale Gitterstruktur durch die sukzessive Adaption des Gitters eines Modelles in einzelnen
numerischen Testldufen ermittelt werden. Die optimale Gitterkonfiguration ist nach HAHNE
(1992) dann gefunden, wenn ,,sich die relevanten Parameter bei Variation der Diskretisierung nur
noch schwach &ndern®. Praktischerweise geht man in diesem Fall von einem méglichst einfachen
Gitter aus und verfeinert dann sukzessive an Punkten, die von besonderem Interesse sind unter
Beachtung des Verhaltens der Konvergenzgeschwindigkeit und der benétigten Rechenzeit.

Als Faustregel hat sich gezeigt, dass der Schrittweitenunterschied in einem Modell zwischen der
groften und kleinsten vorkommenden Schrittweite nicht mehr als den Faktor zehn betragen soll-
te, da sonst eventuelle Vorteile bezliglich der Konvergenzgeschwindigkeit durch die Verfeinerung
wieder verloren gehen. Dies wird auch durch die Hinweise in MAFIA (2000B) bestitigt. Dies
zeigt sich insbesondere bei den Modellen in Kapitel 8, bei denen aufgrund der Modellstruk-
tur Gitterschrittweitenunterschiede bis zu einem Faktor 1000 notwendig waren. Dadurch stieg
die Zahl der benétigten Iterationsschritte bis zum Erreichen einer akzeptablen Niherung um
ungefihr den Faktor zehn an.

5.2.5 Kontrolle der Lésungen

Aufgrund der Tatsache, dass bei verlustbehafteten Problemen mit unterschiedlichen Gitter-
schrittweiten die Konditionszahl der Systemmatrix sehr hoch sein kann, kann sich trotz ent-
sprechender Vorkonditionierung auch mit hohen Iterationsschrittzahlen keine zufriedenstellende
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Konvergenzgeschwindigkeit einstellen. Aber selbst wenn sich durch ein kleines Residuum eine
zufriedenstellende Konvergenz des Verfahrens ergibt, ist das nicht gleichbedeutend mit einem
kleinen Fehler zwischen iterierter Lésung des Gleichungssystems und tatsichlicher Lésung. Dies
kann durch folgende Uberlegung begriindet werden: sei im k-ten Iterationsschritt der Vektor fy
das Residuum! zur Losung Xy, dann ergibt sich zwischen Residuum ) und Iterationsfehler €y
folgender Zusammenhang:

fk=A.ik—B=A.(ik—A—1.B)=A.(>zk—>z)=A.ék. (5.1)

Der Term ¥ = A~L - b stellt dabei die exakte Losung des Gleichungssytems dar. Die Differenz
zwischen exakter und iterierter Lésung ergibt den Iterationsfehler €, = X —X. Analog gilt dann
auch

& =A"1 7. (5.2)

Betrachtet man nun die euklidische Norm von Gleichung (5.1) und verwendet nach HACKBUSCH
(1990) die Dreiecksungleichung, so ergibt sich:

|75l = A €[] < [[A]] - [lex] - (5.3)
Analog ergibt sich mit der selben Uberlegung aus Gleichung (5.2):
1]l = [|A™" - Fil| < [JATH] - [[Fl| - (5.4)

Durch geschicktes Einsetzen ergibt sich aus den Gleichungen (5.3) und (5.4) nach SAAD (1995)
folgende Ungleichung:

(5.5)

In dieser Gleichung bezeichnet 5 die Spektralkondition der Systemmatrix A, die iiber die eukli-
dische Norm definiert ist als n = ||A|| - ||[A~Y|| (HACKBUSCH, 1990). Hierbei ist zu beachten,
dass die Spektralkondition n und die bereits eingefiihrte Konditionszahl y einer Matrix unter-
schiedlich definiert werden.

Aus Gleichung (5.5) ergibt sich ein Dilemma. Zwar lésst sich fiir den relativen Fehler ||€x||/||€o]]
immer eine obere Grenze mit Hilfe des Residuums definieren. Allerdings ist dazu die Kenntnis des
Residuums allein nicht ausreichend. Zusétzlich ist die Kenntnis der Konditionszahl  notwendig.
Diese kann aber nur angegeben werden, wenn die Inverse der Systemmatrix bekannt ist. Wére
wiederum diese bekannt, dann wire das numerische Problem bereits gelGst.

Da die Spektralkondition unbekannt ist, ist eine Aussage {iber den Fehler des Verfahrens allein
durch Kenntnis des Residuums unméglich. Es ist weiterhin ersichtlich, dass eine grofie Spek-
tralkondition fiir die Abschétzung des Iterationsfehlers nachteilig ist. Aus diesem Grund wird

'Mit Residuum ¥ wird die Differenz zwischen rechter und linker Seite der Gleichung A - X = b bezeichnet.
Konvergiert das numerische Verfahren, so geht das Residuum gegen Null.
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den in Abschnitt 5.2.2 angesprochenen Verfahren zur Vorkonditionierung der Systemmatrix so
viel Bedeutung beigemessen, um eine Konditionszahl der Systemmatrix méglichst nahe bei eins
zu erreichen. Allerdings kann, wie bereits dort angemerkt, eine Vorkonditionierung auch einen
gegenteiligen Effekt haben und die Konditionszahl der Systemmatrix erhéhen.

Da die Spektralkondition der Systemmatrix schwer zu ermitteln ist, ist das Residuum allein
nicht ausreichend fiir eine Beurteilung iiber die Qualitdt der numerischen Ldsung und des nu-
merischen Fehlers. HAHNE (1992) schligt daher als weitere Moglichkeit zur Uberpriifung der
Losung die Erfiillung der Kontinuitétsgleichung? im Rechenvolumen vor. Dazu wird folgende
diskrete Gleichung im gesamten Gitter ausgewertet (MAFIA, 2000B):

S. (i tjw- Dgé) —¢. (5.6)
Als Qualitdtsmafl dient der Wert der skalaren Grofle £. Die iterierte Losung ist als umso bes-
ser anzusehen, je besser die Kontinuititsgleichung erfiillt wird. Dies ist gleichbedeutend mit
moglichst kleinen Werten filir £ nahe bei Null.

Zusétzlich dazu ist es notwendig jede Losung in Augenschein zu nehmen und auf physikalische
Plausibilitdt zu tiberpriifen. So sind zum Beispiel Stromfliisse in Gebieten des Rechenvolumens,
die keine Leitfihigkeit besitzen, nicht moéglich.

Aufgrund der Tatsache, dass fiir die hier vorgestellten Modelle in einigen Fillen experimentel-
le Daten aus anderen Quellen vorliegen, ergibt sich bei der Abschétzung der Erwdrmung von
Kérpergewebe noch die Mdglichkeit den Energieverlust im Rechenvolumen als Qualitétsmerkmal
zu verwenden. Es hat sich gezeigt, dass sich bei falscher Parameterwahl fiir den L&sealgorith-
mus trotz guter Konvergenz und Erfiillung der Kontinuitdtsgleichung unverhéltnismifig hohe
Energieverluste im Rechenvolumen ergeben haben, die zu viel hdheren Erwidrmungen gefiihrt
haben, als dies im Rahmen der experimentellen Studien beobachtet worden wire. Die genauere
Betrachtung der Losung fiihrte dann auf die falsche Parameterwahl.

Liegen keine experimentellen Vergleichsdaten vor oder gibt es keine analytische Losung, so blei-
ben fiir die Kontrolle der numerischen Lésungen nur die oben beschriebenen Methoden. In diesen
Féllen sind die berechneten Ergebnisse in jedem Fall unter Vorbehalt zu verstehen, bis sie z.
B. einer experimentellen Uberpriifung standgehalten haben. Dies zeigen auch im folgenden die
Ergebnisse der numerischen Testsimulationen.

5.2.6 Ergebnisse der numerischen Testsimulationen

Die numerischen Modelle in dieser Arbeit werden in einem grofen Frequenzbereich untersucht, so
dass im Rahmen der numerischen Voruntersuchungen die Frequenz als eigenstindiger Parameter
berticksichgt werden muss. Als Werte fiir die Anregungsfrequenz wurden 1 Hz, 1 kHz, 1 MHz
und 1 GHz gewé&hlt. Als Gleichungstyp wird, wie in Abschnitt 5.2.1 begriindet, die diskrete
Curl-Curl-Eigenwertgleichung verwendet. Diese wird jeweils mit dem COCGSSOR-, PSBCGR-

Die Kontinuititsgleichung driickt aus, dass eine zeitliche Abnahme der Ladung innerhalb eines kleinen Vo-
lumens einem Ladungsstromfluss durch die Oberfliche des Volumens entsprechen muss, da der Gesamtbetrag

der Ladung erhalten bleibt, also vV-J+ Op/dt = 0 gilt. Mit Hilfe der dritten Maxwell-Gleichung (2.3) kann die
Kontinuitédtsgleichung auch geschrieben werden als V. (f+ jw€E> = 0 und ist so Grundlage fiir die Gitter-

Kontinuititsgleichung (5.6).
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Abbildung 5.2: Vergleich der Konvergenzgeschwindigkeit des COCGSSOR-, PSBCGR- und PQMR-
Algorithmus des Frequenzbereichslosers W3 bei vier verschiedenen Frequenzen, sowie einfacher und
doppelter Genauigkeit. Die Iteration wurde jeweils nach 5000 Schritten oder bei Unterschreiten
eines Residuums von 1 - 107> abgebrochen. Das untersuchte numerische Modell ist in Abbildung 5.1
dargestellt.
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Frequenz | COCGSSOR PSBCGR PQMR

1 Hz 3,6-1008W 6,7-108W 3,9.10018 W
1kHz | 5,2-100°W 6,0-100°W 4,7-107° W
1MHz | 80-107'W 1,0-10°W 8,0-107' W
1 GHz 56-10*W 59.10'W 1,7-103W
1 Hz 6,6-10013W 6,6-1001W 6,6-10713 W
1kHz | 4,2-100"W 4,1-10°W 4,0-100°W
1 MHz | 84-107'W 8,5-100'W 84-107'W
1 GHz 1,3-10*W  2,1-10°W  2,6-103 W

Tabelle 5.1: Deponierte Leistung im Testmodell bei einfacher (obere Tabellenhdlfte) und doppelter
Genauigkeit (untere Tabellenhalfte) nach 5000 lterationen. Die berechneten Leistungen unterschei-
den sich zwischen den verwendeten Algorithmen bei einfacher Genauigkeit erheblich. Verwendet man
eine doppelt genaue Zahlendarstellung, so ergeben sich mit den verschiedenen Losealgorithmen bis
auf die Ergebnisse bei einer Anregungsfrequenz von 1 GHz fast die gleichen Ergebnisse. Die Abwei-
chungen bei 1 GHz ergeben sich aus der schlechten Konvergenzgeschwindigkeit des Residuums.

und PQMR-Algorithmus mit einfacher und doppelter Genauigkeit gel6st. Im einzelnen ergeben
sich so 24 Simulationsléufe.

Aufgrund der in Abschnitt 5.2.2 angesprochenen Probleme, wurde bei diesen numerischen Tests
auf eine zusétzliche Vorkonditionierung neben den bereits in den Algorithmen enthaltenen Vor-
konditionierungen verzichtet. Numerische Testldufe, die die anderen Gleichungstypen und Vor-
konditionierungsméglichkeiten miteinander vergleichen findet man bei HAHNE (1992).

Abbildung 5.2 zeigt die Residuenverldufe der 24 Simulationsrechnungen. Der Vergleich zwischen
einfacher und doppelter Genauigkeit bei der internen Zahlendarstellung der numerischen Algo-
rithmen zeigt deutliche Vorteile bei Verwendung doppelter Genauigkeit. In der Regel wird das
geforderte Residuum viel schneller erreicht, insbesondere auch bei den Féllen, bei denen bei
einfacher Genauigkeit die Iterationsverfahren divergieren. Dies ist bereits bei einer Anregungs-
frequenz von 1 Hz zu erkennen. Bei einfacher Genauigkeit erreicht das COCGSSOR-verfahren
erst nach 270 Iterationen das geforderte Residuum. Das PQMR-Verfahren divergiert, nachdem
es ein Minimum erreicht hat. Das PSBCGR-Verfahren stagniert nach 150 Schritten. Bei Verwen-
dung der doppelt genauen Zahlendarstellung erreichen alle drei Verfahren nach ca. 50 Schritten
das geforderte Residuum.

Ahnlich sieht es bei 1 kHz und 1 MHz aus. Die Konvergenzgeschwindigkeit ist bei doppelt ge-
nauer Zahlendarstellung deutlich besser. Fiir das PSBCGR- und das PQMR-Verfahren scheint
eine doppelt genaue Zahlendarstellung sogar obligatorisch zu sein. Bei diesen beiden Frequenzen
zeigt sich das PSBCGR-Verfahren den beiden anderen Algorithmen iiberlegen, da das geforderte
Residuum schneller erreicht wird.

Bei einer Anregungsfrequenz von 1 GHz konnte bei keinem der Testldufe nach 5000 Iterations-
schritten das geforderte Residuum erreicht werden. Aufgrund der Kurvenverldufe ist es schwer
abzuschétzen, ob durch eine Erhéhung der Iterationschritte das geforderte Residuum erreicht
werden wiirde. Berechnungen in diesem Frequenzbereich stoflen daher auf nicht unerhebliche
Schwierigkeiten.
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Frequenz | COCGSSOR PSBCGR  PQMR

1 Hz 7,3.107% 7,3.-107% 7,3.107?
1 kHz 8,2-1077  6,1-1077 3,8-1077
1 MHz 3,6-10>  9,7-107° 1,2.1076
1 GHz 4,1-100Y  1,7-107%2 9,3-102
1 Hz 9,6-1006 9,2.1076 9,9.10°¢
1 kHz 6,9-107¢ 52.107% 9,1-10°6
1 MHz 1,3-107° 9,9-107% 9,9.107¢
1 GHz 3,1-107Y  2.3.107' 2,6-107!

Tabelle 5.2: Erfiillung der Kontinuitatsgleichung im Testmodell bei einfacher (obere Tabellenhalfte)

und doppelter Genauigkeit (untere Tabellenhalfte) nach 5000 Iteratione. Als QualitaitsmaB der nume-

rischen Lésung wird die Erfiillung der Kontinuitatsgleichung (5.6) im Rechenvolumen iiberpriift. Die

Gleichung ist umso besser erfiillt, je kleiner der Restbetrag & ist. Bei einfacher Genauigkeit ergeben

sich sogar kleinere Werte fiir £, die eine bessere Qualitat der Losung suggerieren. Bei einem Vergleich

mit Tabelle 5.1 wird diese Vermutung allerindgs nicht bestatigt. Die Leistungswerte differieren bei
einfacher Genauigkeit sehr voneinander.

Die Residuenverldufe zeigen, dass auch die Anregungsfrequenz die Konditionszahl der System-
matrix beeinflusst, da dieser Parameter nach Gleichung (2.30) quadratisch in die Systemmatrix
eingeht und dadurch bei steigender Frequenz die Konditionszahl erhoht.

Als weiteres Qualitdtsmerkmal wurde die Erfiillung der Kontinuititsgleichung, sowie der Ener-
gieverlust im Rechenvolumen berechnet. Tabelle 5.1 zeigt die deponierte Leistung im Korper-
modell bei einfacher und doppelter Genauigkeit. Die Verlustleistung im Rechenvolumen wurde
dabei mit Hilfe von Gleichung (2.57) bestimmt (vgl. dazu auch die Ausfiihrungen in Unter-
kapitel 2.6). Die Werte zeigen bei einfacher Genauigkeit bei den verschiedenen Algorithmen
Unterschiede. Erst die Berechnung mit doppelter Genauigkeit ergibt bis auf die Werte bei einer
Anregungsfrequenz von 1 GHz ungefihr die gleichen Ergebnisse.

Aufgrund der unterschiedlichen Ergebnisse bei einfacher Genauigkeit kann ohne die Kenntnis der
Ergebnisse bei doppelter Genauigkeit nicht abgeschétzt werden, welche Ldsungen als ,richtig®
anzusehen sind. Aus dieser Beobachtung l4sst sich nur schlussfolgern, dass fiir die numerischen
Modelle nur Berechnungen mit doppelter Zahlengenauigkeit sinnvoll sind, auch auf Kosten eines
h6heren Speicherplatzbedarfes.

Ein weiteres Maf fiir die Qualitit der numerischen Lésung ist die Erfillung der Kontinuitéts-
gleichung (5.6). Die Losung ist als umso besser anzusehen, je niher der Restbetrag & bei Null
liegt. Tabelle 5.2 gibt die Restbetrége von £ bei einfacher und doppelter Genauigkeit wieder. Bei
einfacher Genauigkeit ergeben sich zum Teil sogar kleinere Werte fiir £ was zunéchst eine quali-
tativ bessere Losung vermuten ldsst. Bei einem Vergleich mit den Leistungswerten aus Tabelle
5.1 zeigt sich aber, dass diese Vermutung nicht best&tigt werden kann.

Hier zeigt sich das bereits in Abschnitt 5.2.5 angesprochene Dilemma, dass ein kleines Residuum
und eine gute Erfiilllung der Kontinuititsgleichung nicht automatisch eine korrekte Losung des
numerischen Problems bedeuten. Daraus folgt auch, dass diese beiden Merkmale fiir eine alleinige
Beurteilung der Qualitit der numerischen Lésung nicht ausreichend sind.
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Genauigkeit
Algorithmus | einfach doppelt
COCGSSOR | 204 Byte 408 Byte
PSBCGR 204 Byte 408 Byte
PQMR 300 Byte 600 Byte

Tabelle 5.3: Speicherbedarf in Byte der einzelnen Lésealgorithmen pro Gitterknotenpunkt fiir einfa-
che und doppelte Genauigkeit.

Als zusédtzliche Mafinahme empfiehlt sich die Betrachtung der Leistungsabsorption im Rechen-
volumen, auch unter dem Gesichtpunkt, ob die ermittelten Werte fiir die Verlustleistung im
Rechenvolumen angemessen sind. Hierbei muss ggfs. auf Erfahrungswerte und experimentelle
Daten zurtickgegriffen werden. Dennoch ist auch diese Moglichkeit der Qualitidtskontrolle nicht
aussagekriftig genug, wenn keine Vergleichsdaten existieren, so dass im Endeffekt die berechne-
ten Feldverteilungen im einzelnen betrachtet und bewertet werden miissen, wobei aber immer
noch Unsicherheiten bestehen bleiben.

5.2.7 Rechenzeit und Speicherbedarf

Ein weiterer Punkt im Rahmen der numerischen Voruntersuchungen waren Testldufe auf ver-
schiedenen Rechnerarchitekturen, um Aussagen iiber den Zeitbedarf der einzelnen Algorithmen
machen zu kénnen. Die Kenntnis der notwendigen Prozessorzeit pro Iterationszyklus und Kno-
tenpunkt erlaubt dann a priori eine ungefihre Abschéitzung der gesamten Rechendauer.

Als Testmodell wurde wieder das Kérpermodell aus Abbildung 5.1 mit einem Helmholtzspu-
lensystem als Feldanregung mit einer Frequenz von 1 MHz verwendet. Die Gesamtzahl der
Iterationsschritte wurde auf 5000 Schritte eingestellt und die Zeitdauer fiir die gesamte Ite-
ration gemessen. Das Residuum als Abbruchkriterium wurde dabei so klein gew#hlt, dass jeder
Algorithmus alle 5000 Iterationsschritte ausfiihren musste.

Die Berechnungen wurden auf zwei verschiedenen Unix-Systemen durchgefiihrt. Auf beiden Sys-
temen wurde wihrend der Ausfiihrung der Testldufe sichergestellt, dass die benutzten Prozes-
soren® und Hauptspeicherbereiche exklusiv fiir die numerische Software zur Verfiigung standen.
Diese Exklusivnutzung ist aber in der Regel bei diesen Vielbenutzersystemen nicht gegeben.
Als Hardware wurde ein Knoten eines IBM SP-SMP Superparallelrechners mit einem Power
3-1I Prozessor mit 375 MHz, sowie als Vergleich ein Knoten einer SGI ORIGIN 2000 mit einem
MIPS R10000 Prozessor mit 195 MHz verwendet.

Der Speicherbedarf fiir das Testmodell hingt zum einen vom verwendeten Algorithmus und zum
anderen von der internen Zahlendarstellung ab. Bei doppelter Genauigkeit ist pro Gitterkno-
tenpunkt der doppelte Speicherplatz notwendig. Ein gewichtiger Nachteil des Programmpaketes
ist, dass keine dynamische Speicherplatzallokation wihrend der Ausfithrung des Losealgorithmus
moglich ist. Daher bricht die numerische Iteration ab, wenn zu wenig Speicherplatz reserviert

*Das Programmpaket MAFIA bietet keine parallelisiserten Programmversionen an. Bei den Testliufen wurde
daher lediglich immer nur ein Prozessor exklusiv fiir den numerischen Prozess belegt.
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wurde, was bei grofien numerischen Simulationslédufen, die skriptgesteuert im Hintergrund lau-
fen, zwangsldufig zu zeitaufwindigen Neustarts fliihrt. Die Kenntnis des Speicherplatzbedarfes
der einzelnen Algorithmen ist daher von Vorteil. Tabelle 5.3 gibt diesen Speicherplatzbedarf an.
Diese Tabellenwerte umfassen den gesamten Speicherbedarf fiir alle Vektoren und die Systemma-
trix. Anhand dieser Angaben ist es moéglich, vor dem Aufruf des eigentlichen Lésealgorithmus,
den notwendigen Hauptspeicher zu reservieren.

Der Speicherplatzbedarf des Testmodells liegt bei einfacher Genauigkeit bei ungefdhr 104 MB
bei Verwendung des COCGSSOR- und des PSBCGR-Algorithmus. Fiir den PQMR-Algorithmus
werden bei einfacher Genauigkeit aufgrund zusétzlich abgespeicherter Iterationsmatrizen un-
gefdhr 152 MB benotigt. Bei doppelter Genauigkeit steigt der Speicherbedarf auf 208 MB fiir
den COCGSSOR- und den PSBCGR-Algorithmus, sowie 304 MB fiir den PQMR-Algorithmus

an.

Das Softwarepaket MAFIA ist eine 32-Bit-Applikation und ist daher in der Lage einen maxi-
malen Hauptspeicherbereich von 23! Bit oder 2 GB zu adressieren. Dadurch wiren theoretisch
bei einfacher Genauigkeit Probleme mit bis zu 10,5 Millionen Gitterknotenpunkten mit dem
COCGSSOR- oder PSBCGR-Algorithmus 16sbar, vorausgesetzt, der dazu notwendige Haupt-
speicher steht dem Anwender zur Verfligung. Bei doppelter Genauigkeit und bei Verwendung
des PQMR-Algorithmus sinkt die Zahl der m&glichen Knotenpunkte auf 3,6 Millionen.

Nimmt man an, dass in jeder Raumrichtung eines dreidimensionalen Gitters gleich viele Gitter-
kanten existieren, kann man durch das Ziehen der dritten Wurzel aus der mdglichen Gesamt-
knotenzahl die Anzahl der Kanten pro Raumrichtung berechnen, um so eine Vorstellung der
moglichen rdumlichen Diskretisierung zu bekommen. Bei 10,5 Millionen Gitterknoten wéren so
in jeder Raumrichtung maximal 218 Kanten moglich, bei 3,6 Millionen Gitterknoten nur 153.

Diese Angaben stellen eine theoretische obere Grenze fiir die Modellkomplexitdt dar. In der
Realitdt wird man oft darunter liegen, da zum einen nicht der gesamte Hauptspeicher fiir die
Speicherung der Vektoren und Systemmatrix zur Verfiigung steht, sondern fiir das Programm
selbst und fiir weitere Datenfelder benttigt wird. Zum anderen steht nicht in jeder Rechnerkon-
figuration ein Hauptspeicher von 2 GB zur Verfiigung, so dass die mogliche Komplexitat der
Modelle von vorneherein eingeschrénkt ist. In der Praxis haben sich bei einfacher Genauigkeit
Modelle mit bis zu 4 Millionen Knotenpunkten, bei doppelter Genauigkeit mit bis zu 2 Millionen
Knotenpunkten, als noch mit vertretbarem Aufwand berechenbar erwiesen.

Ein weiterer wichtiger Gesichtspunkt ist der Anstieg der gesamten Rechenzeit fiir ein numerisches
Modell. Diese steigt linear mit der Anzahl der Gitterknoten an und fithrt bei groflen Modellen
zu sehr zeitintensiven Simulationsldufen. Der hohe Rechenzeitbedarf verhindert in diesen Fallen
eine grofle Anzahl von einzelnen Simulationen fiir numerische Vergleiche oder zahlreiche Wieder-
holungen einer Simulation mit verdnderten Parametern. Die Berechnung von grofien Modellen
muss daher auf eine kleine Auswahl eingeschrdnkt werden. Aus diesem Grund sind numeri-
sche Voruntersuchungen wichtig und liefern wertvolle Hinweise fiir die nachfolgende Simulation
hochkomplexer Modelle.

Tabelle 5.4 gibt eine Ubersicht iiber die notwendigen Rechenzeiten der einzelnen Algorithmen bei
einfacher und doppelter Genauigkeit. Aus der Tabelle ist ersichtlich, dass der Rechenzeitbedarf
pro Knotenpunkt und Iteration bei doppelter Genauigkeit auf beiden Rechnern und bei allen
Algorithmen leicht ansteigt. Der Zeitbedarf fiir den PQMR-Algorithmus liegt dabei tiber den
anderen beiden weniger speicherintensiven Algorithmen. Insgesamt zeigt sich, dass der IBM SP-
Knoten im groflen und ganzen ungefihr dreimal so schnell wie der SGI ORIGIN-Knoten ist,
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Rechner COCGSSOR  PSBCGR PQMR
SGI Origin 2000 | 9,0-107%s 1,5.107°s 1,8.107%s
IBM SP-SMP | 3,7-107%s 4,7-10%s 6,5-107Cs
Faktor 2,47 3,16 2,76
SGI Origin 2000 | 1,1-107%s 1,7-107%s 2,2-107°s
IBM SP-SMP | 4,4-10%s 5,5-10%s 8,3-107Cs
Faktor 2,61 3,12 2,67

Tabelle 5.4: Zeitbedarf der einzelnen Algorithmen auf verschiedenen Rechnern bei einfacher (obere

Tabellenhalfte) und doppelter Genauigkeit (untere Tabellenhalfte). Die Zeitangaben beziehen sich

auf den Zeitbedarf pro Knotenpunkt und lteration. Um die gesamte lterationsdauer abzuschatzen,

muss der angegebene Wert in Sekunden mit der Gesamtknotenzahl und der Zahl der zu berechnenden

lterationsschritte multipliziert werden. Zusatzlich ist der Geschwindigkeitsunterschied zwischen den
beiden Rechnern als Faktor mitangegeben.

was in erster Linie an der hoheren Prozessorfrequenz und der schnelleren Speicherbusanbindung
dieser Maschine liegt.

Aufgrund der ermittelten Rechenzeiten lassen sich fiir komplexe Modelle Zeitabsch&tzungen
angeben. Ein hochkomplexes Kérpermodell mit 2 Millionen Knotenpunkten wiirde demnach
auf einem Knoten der SGI ORIGIN 2000 bei 10000 Iterationsschritten, einfacher Genauigkeit
und bei Verwendung des PSBCGR-Algorithmus bei exklusiver Prozessor- und Speichernutzung
im schnellsten Fall ungefdhr 84 h benétigen. Bei doppelter Genauigkeit und bei Verwendung
des PQMR-Algorithmus wiirde die Rechenzeit auf ungefihr 122 h flir einen Simulationslauf
ansteigen.

Diese Abschédtzung ergibt aber nur eine untere Grenze fiir die zu erwartende Rechenzeit, da
bei langdauernden Simulationsldufen auf Mehrbenutzermaschinen nicht immer eine exklusive
Belegung fiir einen Prozessor und Speicherplatz garantiert werden kann und bei hoher Maschi-
nenauslastung die Rechenzeiten beliebig ansteigen konnen. Weiterhin zeigen diese Zahlen die
Beschrinkungen beziiglich der Gesamtzahl an Modellrechnungen, da nicht beliebig viele Res-
sourcen fir komplexe Modelle zur Verfiigung stehen. Es ist daher stets zu priifen, ob sich die
betrachteten Fragestellungen nicht auch mit weniger komplexen Modellen beantworten lassen.

5.2.8 Optimale Wahl der numerischen Parameter

Die Ergebnisse der vorangegangenen numerischen Untersuchungen liefern Hinweise fiir die Wahl
der einzelnen numerischen Parameter zur Lésung von Problemen mit komplexen Korpermodel-
len.

Die Auswahl der Systemgleichung ist aufgrund der betrachteten verlustbehafteten Probleme ver-
gleichsweise einfach. Die Wahl fillt hier auf die weniger speicherintensive Curl-Curl-Gleichung
(2.30), da die erweiterte Formulierung dieser Gleichung als Gitter-Helmholtzgleichung bei ver-
lustbehafteten Problemen keinerlei Vorteile bringt, aber deutlich mehr Speicherplatz benétigt
(HAHNE, 1992).
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Die Konvergenzverldufe des Residuums in Abbildung 5.2 erlauben eine Auswahl beziiglich Lose-
algorithmus und interner Zahlendarstellung. In fast allen untersuchten Féllen konnte bei Ver-
wendung einer doppelt genauen Zahlendarstellung eine bessere Konvergenzgeschwindkeit des
Residuums erreicht, bzw. iberhaupt eine Konvergenz erzielt werden. Dies wird auch durch die
berechneten Leistungsverluste im Korpermodell unterstiitzt, die nur bei doppelter Genauigkeit
bei allen drei Losealgorithmen ungefihr die gleichen Werte ergaben. Aus diesem Grund werden
die numerischen Modelle von nun an nur bei doppelter Genauigkeit berechnet, auch wenn hierzu
mehr Speicherplatz notwendig ist und dadurch die Anzahl der moglichen Gitterknoten halbiert
und so die Modellkomplexitit stark eingeschrinkt wird.

Da die betrachteten Lésealgorithmen (COCGSSOR, PSBCGR und PQMR) bereits {iber Vorkon-
ditionierungsmechanismen verfiigen, ist die Systemmatrix gut dquilibriert. Weitere numerische
Experimente, die hier nicht aufgefithrt wurden, zeigten keine Verbesserung der Konvergenzge-
schwindigkeit bei Anwendung verschiedener Skalierungen und bestitigten die Ergebnisse von
HAHNE. Auf die Anwendung einer zusétzlichen Skalierung der Systemmatrix wurde daher bei
den numerischen Modellen im Rahmen dieser Arbeit verzichtet.

Als Algorithmen zeigten sich der PSBCGR- und der PQMR-Algorithmus dem COCGSSOR-
Algorithmus beziglich der Konvergenzgeschwindigkeit und des Konvergenzverhaltens tiberlegen
(sh. Abbildung 5.2). Der COCGSSOR-Algorithmus scheidet dadurch als Losealgorithmus fiir
komplexe Koérpermodelle aus. Dies Erfiillung der Kontinuitétsgleichung zeigt sich auch in den
Ergebnissen in Tabelle 5.2. Der PSBCGR-Algorithmus hat hier zum PQMR-Algorithmus ver-
gleichbar gute Ergebnisse beziiglich der Kontinuitatsgleichung (5.6) und der Energiebetrachtung
erzielt.

Die Konvergenzgeschwindigkeit des PSBCGR-Algorithmus in Abbildung 5.2 war in vielen
Fillen sogar deutlich besser als die des PQMR-Algorithmus, zumal das Residuum des PQMR-
Algorithmus nach Erreichen eines Minimums zum Divergieren neigt. Da der PSBCGR-
Algorithmus zudem weniger Speicherplatz und Rechenzeit bendtigt, ist er dem PQMR-
Algorithmus vorzuziehen.

Als optimale Parameter zur Losung der numerischen Probleme in dieser Arbeit haben sich
aufgrund der Ergebnisse der numerischen Voruntersuchungen die Loésung der Curl-Curl-
Eigenwertgleichung mit dem PSBCGR-Algorithmus bei doppelter Genauigkeit herausgestellt.

5.3 Vergleich der expliziten und impliziten Zeitintegration

Zur Berechnung thermodynamischer Probleme stehen wie in Abschnitt 2.5 beschrieben zwei ver-
schiedene Algorithmen zur Verfiigung, die die Biowirmeleitungsgleichung (2.34) im Zeitbereich
16sen. Die Auswahl des Algorithmus, der fiir die Losung des betrachteten Problems besser geeig-
net ist, entscheidet sich anhand des Aufbaus und der Struktur des numerischen Modells, sowie
der Dauer des Simulationszeitraumes. Anhand eines einfachen numerischen Modells kénnen die
beiden Algorithmen und ihre Effizienz direkt miteinander verglichen werden. Aus den gewonne-
nen Erkenntnissen lassen sich dann Aussagen iiber die Verwendbarkeit der thermodynamischen
Algorithmen bei komplexen numerischen Modellen des menschlichen Kérpers ableiten. Ein Ver-
gleich mit einer analytischen Ndherungslosung liefert weitere Hinweise {iber die Genauigkeit der
numerischen Verfahren. Diese Punkte werden im folgenden untersucht.
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Abbildung 5.3: Einfaches numerisches Modell
einer Stahlkugel, die mit einem als unendlich
groB angenommenen umgebenden Warmebad im
Wirmeaustausch steht. Die Anfangstemperatur
der Kugel wurde auf 300 K gesetzt. Die des
Warmebades auf 270 K. Der Radius der Kugel
betragt 0,1 m. Die Abkiihlung der Kugel wur-
de fiir einen Zeitraum von 1800 s mittels einer
analytischen Naherungslosung und dem explizi-
ten und impliziten thermodynamischen Algorith-
mus berechnet.

5.3.1 Aufbau des Kugelmodells

Als Simulationsbeispiel wurde eine Stahlkugel mit einem Radius von 0,1 m mit einer Anfang-
stemperatur von 300 K in ein unendlich grofles Wiarmebad mit einem fluiden Medium von 270 K
gebracht und die Abkiihlung der Kugel in einem Zeitraum von 1800 s simuliert (sh. Abbildung
5.3). Als Kugelmaterial wurde V2A-Stahl mit einer Dichte p von 8000 kg/m?, einer spezifi-
schen Wirmekapazitat c¢s von 477 J/(kg - K) und einer Wérmeleitfihigkeit A von 15 W/(m - K)
angenommen. Der Wirmeiibergangskoeffizient o wurde auf 75 W/(K - m?) gesetzt.

Das numerische Modell aus Abbildung 5.3 besteht aus ca. 50000 kubischen Voxeln mit einer Git-
terschrittweite von 10 mm in allen drei Raumrichtungen. Der Abkiihlungsvorgang wurde mit dem
expliziten und impliziten Algorithmus mit insgesamt vier verschiedenen festen Zeitschrittweiten
simuliert. Der grofe Gitterabstand ermdglichte unter Berlicksichtigung des Stabilitétskriteriums
(2.46) Zeitschritte von 0,1 s und 1 s fiir den expliziten Algorithmus und 0,1 s, 1 s, 10 s und
100 s fiir den impliziten Algorithmus. Die Zahl der Iterationen wurde so gesetzt, dass bei jedem
Simulationslauf eine gesamte simulierte Zeitdauer von 1800 s erzielt wurde. Die Berechnungen

wurden auf einer IBM SP/SMP mit 375 MHz Prozessortakt und 2 GB Hauptspeicher durch-

Algorithmus ‘ explizit ‘ implizit
Zeitschritt 0,1s 1,0s| 0,s 1s 10s 100 s
56s 6s |181s 238s 38s 14s

Iterationsdauer

Tabelle 5.5: Vergleich der Rechenzeiten am Validierungsbeispiel bei Verwendung des expliziten und

impliziten Algorithmus mit verschiedenen Zeitschritten. Bei gleicher Zeitschrittweite ist der explizite

Algorithmus dem impliziten beziiglich der lterationsdauer deutlich iiberlegen. Der implizite Algorith-

mus ist dann von Vorteil, wenn durch das Stabilitatskriterium (2.46) fiir den expliziten Algorithmus

nur Zeitschrittweiten unter 100 ms moglich sind, wie das z. B. bei kleinen Gitterschrittweiten der
Fall ist.
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Abbildung 5.4: Temperaturverteilung im Innern einer Stahlkugel wahrend eines Abkiihlvorganges

von einer homogenen Anfangstemperatur von 300 K bei einer AuBentemperatur von 270 K zu sechs

verschiedenen Zeitpunkten. Die Kugel steht mit dem umgebenden fluiden Medium, welches ein un-

endlich grosses Warmereservoir darstellt, im Warmeaustausch. Die einzelnen Zeitpunkte liegen aus-
gehend von einem Simulationszeitpunkt von 270 s jeweils 270 s auseinander.

gefiihrt. Um die Effizienz der Algorithmen zu vergleichen, wurde jeweils der Zeitbedarf fiir die
gesamte Iteration aufgezeichnet. In Tabelle 5.5 sind die ermittelten Zeitdauern wiedergegeben.
Abbildung 5.4 zeigt den Abkiihlvorgang am Querschnitt durch das Innere der Kugel an sechs
verschiedenen Zeitpunkten wihrend der Simulation.

5.3.2 Numerische Ergebnisse

Es zeigte sich, dass der explizite Algorithmus bei gleicher Zeitschrittweite im Vergleich zum
impliziten Algorithmus weniger Rechenzeit bendtigt, da pro Iteration weniger Berechnungen
durchzufiihren sind. Beim impliziten Algorithmus kommt, wie in Abschnitt 2.5.2 erldutert, un-
ter Umsténden noch der Aufwand fiir eine Matrixinversion hinzu. Das Kriterium fiir die Neube-
rechnung der Systemmatrix ist die absolute maximale Temperaturdnderung im Rechenvolumen.
Dieser Parameter wurde in diesem Algorithmenvergleich so eingestellt, dass nach jedem Itera-
tionsschritt eine Matrixinversion vorgenommen wurde, was den schlimmsten Fall beziiglich der
Rechenzeitdauer darstellt. Der implizite Algorithmus erweist sich erst ab einer Schrittweite von
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Abbildung 5.5: Vergleich der absoluten Temperaturwerte berechnet mit der N&herungsldsung

(durchgezogene Linie) nach Gleichung (5.9) und den Ergebnissen des expliziten (Vierecke) und impli-

ziten (Dreiecke) thermodynamischen Algorithmus bei Berechnung der Abkiihlung einer Stahlkugel in

der Kugelmitte (a) und am Rand (b). Als Zeitschrittweite des expliziten Algorithmus wurde 0, 1s und

fiir die des impliziten Algorithmus 100s gewahlt. Die Lésungen der beiden Algorithmen unterscheiden
sich trotz der groBen Zeitschrittdifferenz fast nicht voneinander.

10 s im Vergleich zum expliziten Algorithmus bei einer Zeitschrittweite von 0,1 s als vorteilhaft.
Sind fiir den expliziten Algorithmus sogar gréflere Schrittweiten mdoglich, wie z. B. die hier an-
genommene Schrittweite von 1 s, so ist der implizite Algorithmus selbst bei Verwendung einer
Zeitschrittweite von 100 s deutlich langsamer.

Weiterhin l4sst Tabelle 5.5 erkennen, dass sich der Zeitbedarf fiir den impliziten Algorithmus
nicht linear zur Zeitschrittweite verhilt, wie dies beim expliziten Algorithmus zu erwarten ist, da
hier der Aufwand fiir jeden Iterationsschritt im Prinzip aus einer Matrix-Vektor-Multiplikation
besteht und unabhingig von der Schrittweite immer gleich grof ist. Beim impliziten Algorith-
mus hingegen kann beziiglich der Konvergenzgeschwindigkeit der Matrixinversion a priori keine
Aussage gemacht werden.

Daraus ldsst sich folgern, dass der weniger aufwindige explizite Algorithmus zu bevorzugen ist,
wenn die maximal zul&dssige stabile Zeitschrittweite und die gewiinschte Simulationsdauer nicht
zu einer hohen Anzahl an Iterationsschritten fiihrt. Dabei gilt auch zu beachten, dass sich mit
jedem Iterationsschritt die Abweichungen der Temperaturverteilung vom realen Fall durch Feh-
lerfortpflanzung vergréBern (PINDER, 1998). Beziiglich der Zeitintegration ist der Fehler des
expliziten Algorithmus nur von erster Ordnung, bei impliziter Zeitintegration von zweiter Ord-
nung. Dieser Vorteil geht aber bei einer grofien Anzahl an Iterationsschritten verloren. Beztiglich
der Ortsdiskretisierung sind die Fehler beider Verfahren von zweiter Ordnung, so dass sich daraus
kein Vorteil fiir das eine oder das andere Verfahren ergibt.

5.3.3 Analytische Niherungslésung

Fiir das thermodynamische Kugelproblem existiert eine analytische Losung (WAGNER, 1993).
Die Temperatur 1" zu einem Zeitpunkt ¢ im Abstand r zum Kugelmittelpunkt kann durch eine
unendliche Reihe ausgedriickt werden:
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Abbildung 5.6: Abweichung zwischen der analytischen N3herungsldsung nach Gleichung (5.9) und

den Ergebnissen der thermodynamischen Algorithmen ausgehend von den Daten aus Abbildung 5.5.

Diagramm (a) zeigt die Abweichung der Losungen in der Kugelmitte des expliziten Algorithmus

(Vierecke) und des impliziten Algorithmus (Dreiecke). Diagramm (b) zeigt die Abweichung von der

Naherungslésung an einem Punkt der Kugeloberflache. Wie im Text beschrieben verringert sich die

Abweichung mit Fortschreiten des simulierten Zeitraumes. Die beobachteten Abweichungen liegen
im Kugelinneren unter den Werten an der Kugeloberflache.

4 N1 (—nZ2a
T(t):TU'i‘(TO_TU)‘;'n;E-e( 1 th).sin(%-%>, n=13>5.... (57)

Dabei ist Ty die Temperatur des umgebenden Fluids, T die Anfangstemperatur der Kugel, R der
Radius der Kugel und r der Abstand vom Mittelpunkt der Kugel (r < R), an dem die Temperatur
berechnet werden soll. Die Gréfle a (m?/s) wird in der Literatur als Temperaturleitfihigkeit
bezeichnet und ist definiert als (BEITZ & KUTTNER, 1995):

(5.8)

Die Reihe (5.7) besteht nur aus ungeraden Elementen n. Obwohl sie aus unendlich vielen Glieder
besteht, kénnen brauchbare Niherungen abgeleitet werden, indem héhere Glieder vernachlissigt
werden. Dies gilt in der Regel nicht fiir kleine Werte von ¢. Eine Ndherung der unendlichen Reihe
(5.7) findet man bei BEITZ UND KUTTNER (1995):

_s.ay) sin(d-%
T(t)=TU—|—(T0—TU)-C'e(6R2t)~%. (5.9)
‘R
Diese Niaherung gibt die Temperatur im Inneren der Kugel mit einem Fehler < 2% wieder, wenn
berticksichtigt wird, dass folgende Bedingung gilt:

a-t At

G2 5018, 1
= e 2018 (5.10)
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Die Konstanten C' und ¢ in Gleichung (5.9) hiingen von der Biot-Zahl ab und kénnen Tabellen
entnommen werden, z. B. aus (BEITZ & KUTTNER, 1995). Die Biot-Zahl stellt eine dimensions-
lose Grofle dar und ist nach WAGNER (1993) definiert als:

a-R

Bi =
YT

(5.11)

Bei der Auswahl des Kugelmaterials wurden darauf geachtet, dass die GréBen R, p, c; und A so
dimensioniert sind, dass die Bedingung (5.10) innerhalb der Simulationszeit erfiillt wird. Setzt
man fiir diese Gréflen die angenommenen Werte ein, so ergibt sich ein Zeitpunkt ¢ = 458 s ab
dem die Bedingung (5.10) erfiillt wird, was innerhalb dem betrachteten Zeitraum von 1800 s
liegt.

Abbildung 5.5 vergleicht den Temperaturverlauf in der Kugelmitte und am Kugelrand unter
Verwendung der expliziten Zeitintegration mit einer Schrittweite von 0,1 s, der impliziten Zei-
tintegration mit einer Schrittweite von 100 s und der analytischen Lésung. Trotz des grofien
Schrittweitenunterschiedes zwischen explizitem und implizitem Algorithmus sind die Tempera-
turverldufe nahezu identisch. Die analytische N&herungslésung zeigt — wie oben angegeben —
bei kleinen Simulationszeiten ¢ noch deutliche Abweichungen vom tatsichlichen Temperaturver-
lauf. Ab dem Zeitpunkt ¢ = 500 s stimmen die analytischen und die numerischen Werte dann
fast {iberein. Dies wird auch durch Abbildung 5.6 deutlich, in der die absoluten Abweichung
der numerischen Lésung von der analytischen Lésung in Prozent angegeben ist. Mit steigender
Simulationszeit ¢ verringert sich die Abweichung der numerischen Ldsung von der analytischen
N&herungslésung (THIELE ET AL., 2002).

5.3.4 Bewertung der numerischen Verfahren

In der Regel ist die explizite Zeitintegration (sh. Abschnitt 2.5.1) durch den geringeren Rechen-
aufwand pro Zeitschritt vorteilhafter. Da der maximale stabile Zeitschritt bei diesem Verfahren
durch das restriktive Stabilititskriterium (2.46) eingeschréinkt ist, geht dieser Vorteil bei langen
simulierten Zeitrdumen und einer daraus resultierenden groflen Anzahl an Zeitschritten wie-
der verloren. Zur Ldsung solcher Probleme muss dann der numerisch aufwindigere implizite
Algorithmus (sh. Abschnitt 2.5.2) verwendet werden.

Aufgrund der Vielzahl der moéglichen Modelle kann aber keine generelle Regel abgeleitet werden,
ab welcher Zeitschrittanzahl der implizite Algorithmus dem expliziten vorgezogen werden sollte.
Es muss folglich immer der Einzelfall betrachtet werden. Da die implizite Zeitintegration einige
freie Parameter wie z. B. den Zeitschritt besitzt, die das Verhalten des Algorithmus bei der
Inversion der Systemmatrix beeinflussen, kommen zusitzliche Komponenten hinzu, deren Ein-
stellungen die Iterationsdauer giinstig oder ungilinstig beeinflussen kann. Der Zusammenhang
zwischen gesamter Iterationsdauer und gew&hltem Zeitschritt bei der impliziten Zeitintegrati-
on ist, wie bereits beschrieben, daher nichtlinear. Die Wahl zwischen expliziter oder impliziter
Zeitintegration beztiglich der kiirzesten Gesamtiterationsdauer muss anhand einiger Probesimu-
lationen mit dem betrachteten Modell entschieden werden.

Bei den im folgenden betrachteten Modellen scheidet allerdings der expliziten Algorithmus aus.
Die Gitterschrittweiten der Modelle liegen aus Griinden der besseren Ortsauflésung und Konver-
genz der Frequenzbereichsloser (siehe Unterkapitel 2.3) im Millimeter- oder sogar im Mikrome-
terbereich, so dass sich aufgrund des Kriteriums (2.46) nur maximale stabile Zeitschrittweiten fiir
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Abbildung 5.7: Vergleich der Temperaturverlaufe des impliziten Verfahrens mit konstantem und

adaptivem Zeitschritt. Die durchgezogenen Linien geben den Temperaturverlauf in der Kugelmitte

(a) und am Kugelrand (b) wieder. Als Zeitschritt wurde 1 s gewahlt. Die Punkte in beiden Bildern

geben die Temperaturwerte wieder, die mit der adaptiven Zeitschrittsteuerung ermittelt wurden.

Als Startzeitschritt wurde ebenfalls 1 s gewahlt. Die maximale Zeitschrittzunahme wurde auf 25 %

festgesetzt, der maximal erlaubte Zeitschritt auf 400 s. Mit diesen Einstellungen endete die Simulation
nach 35 Schritten.

den expliziten Algorithmus im unteren Millisekundenbereich ergeben. Diese fithren aufgrund der
betrachteten langen Simulationszeitintervalle von bis zu 1800 s oder mehr zu einer zu groflen
Anzahl an Iterationsschritten und damit Gesamtiterationsdauer, die dann deutlich tber dem
Zeitbedarf des impliziten Algorithmus mit einer gréfleren Zeitschrittweite liegen.

5.4 Test der adaptiven Zeitschrittsteuerung

Das Ziel einer adaptiven Zeitschrittsteuerung ist eine Verringerung des Rechenaufwandes und
damit ein Zeitgewinn durch Beschleunigung der numerischen Lésung bei Problemen mit Wéarme-
quellen, die iiber eine konstante Leistung verfiigen. Dabei muss sichergestellt werden, dass die
Zunahme des Zeitschrittes nicht zu numerischen Instabilititen und Abweichungen von Lésun-
gen mit konstantem Zeitschritt auftreten. Aus diesem Grund ist darauf zu achten, dass die in
Gleichung (2.51) angegebenen Steuerungsparameter k& und t,,,x so gesetzt werden, dass Abwei-
chungen vermieden werden.

Als Testbeispiel wurde wie im vorherigen Abschnitt eine Stahlkugel mit einem Radius von 0,1 m
in einem unendlich groflen Wérmebad mit einem fluiden Medium von 270 K betrachtet (sh.
Abbildung 5.3). Die Anfangstemperatur der Kugel wurde in diesen Beispielen gleich der Tem-
peratur des Warmebades mit 270 K gesetzt, so dass sich zum Zeitpunkt ¢ = 0 s das gesamte
Rechenvolumen auf der gleichen konstanten Temperatur befand.

Als Kugelmaterial wurde wiederum V2A-Stahl mit einer Dichte p von 8 000 kg/m?, einer spezifi-
schen Warmekapazitit c¢s von 477 J/(kg - K) und einer Warmeleitfahigkeit A von 15 W/(m - K)
angenommen. Der Wirmeiibergangskoeffizient @ wurde in diesen Beispielen auf 50 W /(K - m?)
reduziert, um so die Auskiihlung der Kugel zu verlangsamen.
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Als Energiequelle wurden verschiedene konstante Leistungsdichten gleichméssig im Kugelvolu-
men verteilt. Dabei wurde jeweils die deponierte Gesamtleistung als Eingabeparameter verwen-
det. Die zugehorige Leistungsdichte in W/m? ergibt sich dann durch Division der Gesamtleistung
durch das Kugelvolumen.

Die numerischen Testreihen der adaptiven Zeitschrittsteuerung sollen in den folgenden Abschnit-
ten einige Dinge zeigen. Zunéchst wird gepriift, ob sich bei Anwendung dieser Zeitschrittsteue-
rung Abweichungen in den Temperaturverldufen im Vergleich zu Simulationen mit konstanten
Zeitschritten ergeben. Danach erfolgt eine Betrachtung von Problemen mit gepulsten Leistun-
gen, wie z. B. das gepulste Hochfrequenzfeld bei der Magnetresonanztomographie. Dabei wird
zum einen die Fragestellung beantwortet, ob sich eine gepulste Leistung in ein Problem mit kon-
stanter Ersatzleistung umwandeln 14sst, um nicht mehr auf eine groffe Anzahl von Zeitschritten
angewiesen zu sein, damit jedes An- und Abschalten der Quelle berticksichtigt wird. Zum ande-
ren wird untersucht, ob dieses Problem dann wiederum mit einer adaptiven Zeitschrittsteuerung
gelost werden kann, was automatisch bewiesen ist, wenn im ersten Schritt gezeigt werden kann,
dass eine adaptive Zeitschrittweitensteuerung bei konstanter Leistung keine Abweichungen und
Instabilitdten erzeugt.

5.4.1 Vergleich zwischen festem und adaptivem Zeitschritt

Um zu tiberpriifen, ob eine adaptive Zeitschrittweitensteuerung zu Abweichungen und Instabi-
litdten bei der Berechnung von Temperaturverteilungen im Vergleich zu numerischen Simulatio-
nen mit festen Zeitschrittweiten fiihrt, wurde in der Kugel eine konstante Leistung von 1 000W
deponiert und die Erwdrmung der Kugel jeweils mit dem expliziten und dem implizten Algorith-
mus mit einer konstanter Zeitschrittweite von 1 s mit insgesamt jeweils 4 000 Iterationsschritten
flir einen Zeitraum von 4 000 s berechnet. In Abschnitt 5.3.3 wurde bereits gezeigt, dass die Ab-
weichung der Ergebnisse dieser Algorithmen von einer analytischen Ndherungslésung bei diesen
Einstellungen schon nach kurzen simulierten Zeitriumen nur gering ist (vgl. Abbildungen 5.5

und 5.6).

Der Temperaturverlauf wurde bei diesen Simulationen direkt im Mittelpunkt der Kugel und an
einem Punkt der Kugeloberfliche aufgezeichnet. Die Temperaturverldufe des expliziten und des
implizten Algorithmus sind in Abbildung 5.7 als durchgezogene Linie wiedergegeben. Aufgrund
der guten Ubereinstimmung der Lésungen beider Algorithmen liegen die beiden Temperatur-
verldufe tibereinander und sind im Diagramm nicht voneinander unterscheidbar.
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5.4 Test der adaptiven Zeitschrittsteuerung

Als Parameter fiir die adaptive Zeitschrittsteuerung wurde als Startschrittweite Atp = 1 s
gewahlt. Der Faktor k£ wurde auf 1,25 gesetzt. Als maximaler Zeitschritt Atax wurde ein
Wert von 400 s vorgegeben. Die Iteration wurde nach dem Schritt abgebrochen, bei dem die
vorgegebene Simulationsdauer von 4000 s erreicht wurde. Abbildung 5.8 zeigt den Anstieg des
Zeitschrittes wahrend der Iteration. Mit diesen Einstellungen wurde das Abbruchkriterium be-
reits nach 35 Iterationsschritten erfiillt. Die maximal zuldssige Zeitschrittweite von 400 s wurde
nach 29 Iterationsschritten erreicht.

Abbildung 5.7 zeigt neben den Ldsungen mit fester Zeitschrittweite die Temperaturwerte der
adaptiven Zeitschrittsteuerung als einzelne Rauten. Die gute Ubereinstimmung der Temperatur-
verldufe bestétigt die Vermutung, dass die adaptive Zeitschrittsteuerung aus Unterkapitel 2.5.3
zur Rechenzeitverkiirzung geeignet ist. Der zeitliche Vorteil der adaptiven Zeitschrittsteuerung
wird aus Tabelle 5.6 deutlich. Die notwendige Rechenzeit liegt bei diesem Beispiel sogar unter
der Rechenzeit des schnellen expliziten Algorithmus (vgl. hierzu auch Tabelle 5.5).

Im Rahmen dieser numerischen Testreihen wurden die Parameter k& und t,,.x sehr grofl gewihlt.
Es ist zwar nicht ausgeschlossen, dass selbst noch gréflere Werte zu stabilen Losungen fiihren,
fir die folgenden numerischen Studien geben diese Parameter aus Erwigungen der Rechenge-
nauigkeit und Stabilitit aber die Obergrenze vor.

5.4.2 Ersatz einer gepulsten Leistung durch eine mittlere Dauerleistung

Um zu beantworten, ob sich eine gepulste Leistung in eine dquivalente Dauerleistung umwandeln
lasst wurde wiederum das Kugelmodell nach Abbildung 5.3 verwendet. Dabei wird {iber einen
Zeitraum von 10 000 s die homogene Leistung von 100 W in der Kugel deponiert. Die Erwa&rmung
der Kugel wird wiederum in der Mitte und am Rand aufgezeichnet. Die Leistung von 100 W stellt
dabei die gemittelte Dauerleistung P dar. Dadurch wird pro Sekunde eine Energie von 100 J in
der Kugel abgegeben. Wird nach Abbildung 5.9 eine gepulste Leistung mit einer Pulsdauer ¢,
verwendet, so ist der Wert der Pulsleistung P so einzustellen, dass die deponierte Energie W;
pro Pulsintervall ¢ der deponierten Energie W bei gemittelter Dauerleistung P entspricht:

W:/tl?dt:/tppo-dt:wi. (5.12)
0 0

Algorithmus explizit implizit implizit

Zeitschritt fest fest adaptiv

Schrittweite 1s 1s 1 s bis 400 s
Iterationsschritte | 4000 4000 35

Zeitbedarf 367 s 1040 s 153 s

Tabelle 5.6: Vergleich der Rechenzeiten des expliziten und impliziten Algorithmus mit einer festen

Zeitschrittweite von 1 s mit dem impliziten Algorithmus mit adaptiver Zeitschrittsteuerung mit varia-

blen Zeitschritten von 1 s bis 400 s. Bei allen drei Verfahren wurde ein Gesamtzeitraum von 4000 s

simuliert. Die adaptive Zeitschrittsteuerung ist in diesem Fall selbst dem expliziten Algorithmus iiber-

legen und zeigt in ihrem Temperaturverlauf eine sehr gute Ubereinstimmung mit den Lésungen mit
konstanten Zeitschritten, wie Abbildung 5.7 zeigt.
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Abbildung 5.9: Zeitlicher Verlauf einer ge- P

pulsten Leistung. Die Energiequelle wird

. . . t,
in dieser Darstellung immer an- und aus- .
geschaltet. Das Verhiltnis zwischen Puls- t,

zeitdauer tp und Intervallzeitdauer t; wird P,
benotigt, um die mittlere Leistung einer Er-
satzenergiequelle zu berechnen, von der an-
genommen wird, dass sie konstant ange-
schaltet ist. Dadurch kann in guter Nahe-
rung auf den zeitlichen Ablauf der gepulsten
Leistung verzichtet werden, was den rechne- 0 t
rischen Aufwand reduziert.

Bei einer Pulsdauer von 10 s ergibt sich eine energiedquivalente Pulsleistung von 1000 W, bei
1 s ergeben sich dann 10000 W und bei 0,1 s dann 100000 W.

Abbildung 5.10 zeigt die Temperaturverldufe im Inneren der Kugel und am Kugelrand. Bei der
gepulsten Leistung ergibt sich ein sigezahnartiger Anstieg der Temperatur bis zu einem sta-
tiondren Zustand bei dem die Temperaturwerte in der Gréflenordnung von einigen Kelvin um
einen Mittelwert schwanken. Die Schwankungen am Rand sind dabei grofier als die in der Kugel-
mitte, da hier ein groflerer Energietibertrag an die kiihlere Umgebung stattfindet. Die Ergebnisse
bei den verschiedenen Pulsdauern sind im Diagramm nicht voneinander zu unterscheiden. Die
Temperaturanstiege, die sich durch die Dauerpulsleistung ergeben zeigen zu Beginn der Simula-
tion Temperaturwerte, die den unteren Temperaturen des sigezahnartigen Anstiegs entsprechen.
Bei Erreichen des stationdren Zustandes liegen die Temperaturwerte der Dauerleistung in der
Mitte der Temperaturschwankungen der Pulsleistung.

Eine Vereinfachung der Pulsform zu einer Dauerleistung fiihrt zu einer starken Reduktion des
numerischen Aufwandes. Wie in Abbildung 5.10 zu sehen ist, kann mit der Annahme einer Dau-
erleistung im stationédren Zustand die mittlere Temperatur an beliebigen Punkten des Rechenvo-
lumens angegeben werden. Eine Einschrinkung ist allerdings bei den Temperaturschwankungen
zu sehen. Diese konnen mit einer Ersatzdauerleistung nicht erfasst werden. In den Fillen, in
denen die Temperaturschwankungen klein sind, ist dies aber nicht von Bedeutung. Dies gilt
auch, wenn es nicht unbedingt notwendig ist, die Absolutwerte der Temperaturschwankungen
zu ermitteln.

Ausgehend von den Ergebnissen, dass eine mittlere Dauerleistung als Ersatz fiir eine gepulste
Quelle verwendet werden kann, wenn es um die Berechnung des Verlaufs der mittleren Tem-
peratur geht, lassen sich weitere Schliisse ziehen. Aufgrund der gewonnenen Erkenntnisse aus
den Untersuchungen zur adaptiven Zeitschrittsteuerung kann geschlossen werden, dass als wei-
tere Vereinfachung des numerischen Aufwandes auch bei Berechungen der Temperaturverldufe
bei einer Dauerleistung die adaptive Zeitschrittsteuerung verwendet werden kann. Die Ergeb-
nisse in Abbildung 5.7 haben dies bereits gezeigt und kénnen ohne Einschrinkungen auf diesen
Anwendungsfall ibertragen werden.
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5.5 Zusammenfassung
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Abbildung 5.10: Vergleich zwischen den Temperaturverlaufen bei gepulster Leistung mit unter-
schiedlichen Pulsdauern bei konstanter mittlerer Leistung am Kugelrand (a) und in der Mitte der
Kugel (b). Die einzelnen Temperaturverlaufe bei verschiedenen Pulsdauern sind nicht voneinander
zu unterscheiden. Die Simulation ergibt einen sigezahnartigen Verlauf der Temperaturanstiege. Im
Verlauf der Simulation wird ein stationarer Zustand erreicht, wenn die Energiedeposition wahrend
der Pulszeit gleich dem Engerieabtransport an die Umgebung wahrend der Pulspause ist. Die Tempe-
raturwerte schwanken dann in der GréBenordnung von einigen Kelvin um eine mittlere Temperatur.
Der Temperaturverlauf der gemittelten Dauerleistung (dicke violette Linie) liegt zu Beginn der Si-
mulation bei den unteren Temperaturwerten des siagezahnférmigen Anstieges und bei Erreichen des
stationaren Zustandes in der Mitte der Temperaturschwankungen. Die Leistungsmittelung gibt bei
Erreichen des stationaren Zustandes dann die mittlere Temperatur an.

5.5 Zusammenfassung

In diesem Kapitel wurden die durchgefiihrten numerischen Voruntersuchungen als Grundlage
fir die numerischen Studien in den folgenden Kapiteln vorgestellt. Zunfchst wurde auf das
Konvergenzverhalten der Losealgorithmen zur Lésung der Maxwell-Gleichungen im Frequenz-
bereich eingegangen. Die Vielzahl der zur Verfiigung stehenden Parameter erfordert flir jeden
Anwendungsfall spezielle Voruntersuchungen, um die geeigneten Parameterkombinationen zur
Lésung des Problems zu ermitteln. Im einzelnen wurde zunéchst auf die Auswahl der System-
gleichung und des Lésealgorithmus eingegangen. Darauf folgte eine Diskussion der moglichen
Systemmatrixvorkonditionierungen und der Probleme, die sich bei der Annahme offener Rand-
bedingungen ergeben kénnen. Im weiteren wurde auf die interne Zahlendarstellung und die Vor-
und Nachteile von Gitterverfeinerungen eingegangen. Ein weiteres Problem stellt sich bei der
Kontrolle der physikalischen Korrektheit der Losungen, welches intensiv diskutiert wurde. Die
Gegeniiberstellung verschiedener Konvergenzgeschwindigkeiten einzelner Lésealgorithmen, so-
wie des dazu notigen Zeitbedarfs auf verschiedenen Rechnersystemen schlossen diesen Teil der
Voruntersuchungen ab.

Aufgrund der Betrachtung von Modellen mit verlustbehafteten Korpergeweben bei hohen Fre-
quenzen fiel die Wahl der Systemgleichung auf die Curl-Curl-Eigenwertgleichung. Die Vortei-
le numerisch aufwindigerer Darstellungen dieser Gleichung z. B. in Form einer Helmholtz-
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Gleichung gehen bei verlustbehafteten Materialien im Rechenvolumen wieder verloren, so dass
diese alternativen Gleichungstypen von vorneherein ausscheiden.

Es zeigte sich, dass das Jacobi-vorkonditionierte PSBCGR-Verfahren bei doppeltgenauer Zahlen-
darstellung allen anderen Verfahren bezliglich Konvergenzgeschwindigkeit, Speicherbedarf und
Rechengeschwindigkeit iiberlegen ist. Die Qualitit der numerischen L&sung entspricht derjeni-
gen, die mit dem numerisch aufwindigeren PQMR-Verfahren erreicht werden kann. Daher ist
das PSBCGR-Verfahren vorzuziehen. Zusétzliche Vorkonditionierungen sind zwar maoglich, erga-
ben aber keine zusétzlichen Vorteile beziiglich der Konvergenzgeschwindigkeit der untersuchten
Verfahren.

Gitterverfeinerungen sind auf der einen Seite an Ubergingen zwischen Materialien mit sehr
unterschiedlichen dielektrischen FEigenschaften von Vorteil, bewirken aber gleichzeitig eine
Erhohung der Konditionszahl der Systemmatrix und fiihren dadurch wiederum zu einer geringen
Konvergenzgeschwindigkeit oder im Extremfall sogar zu einer Divergenz des Lésealgorithmus.
Daher sind Gitterverfeinerungen nur mit grofler Sorgfalt anzuwenden, da die Vorteile unter
Umsténden schnell von Nachteilen aufgewogen werden.

In einem weiteren Unterkapitel wurden die explizite und implizite Zeitintegration bei der
Biowirmeleitungsgleichung miteinander verglichen. Dabei ging es zunfchst um einen prinzipiel-
len Vergleich beider Verfahren beziiglich Rechenzeitbedarf und Ubereinstimmung der Losungen.
Da fiir das gewdhlte einfache Kugelmodell eine analytische Néherungslosung existiert, konnten
die Ergebnisse der verschiedenen Iterationsalgorithmen direkt bewertet werden.

Die Ergebnisse zeigten bei beiden Algorithmen eine sehr gute Ubereinstimmung mit der ana-
lytischen Losung. Das explizite Verfahren ist dem impliziten Verfahren nur bei kurzen Simu-
lationszeitrdumen mit wenigen Iterationsschritten iiberlegen. Insbesondere das restriktive Sta-
bilitdtskriterium fiir den maximalen stabilen Zeitschritt schrinkt den Anwendungsbereich des
expliziten Algorithmus stark ein, da bei Gitterschrittweiten im Mikrometerbereich nur noch
Zeitschritte im Millisekundenbereich mdoglich sind, was zu hohen Rechenzeiten bei langen Si-
mulationszeitrdumen fithrt. Die Entscheidung zugunsten des einen oder anderen Verfahrens ist
aber immer im Einzelfall neu zu treffen.

Abschlielend wurde das Verfahren zur adaptiven Zeitschrittsteuerung getestet. Die implizi-
te Zeitintegration des thermodynamischen Losealgorithmus erlaubt die Wahl eines beliebigen
Zeitschrittes. Bei Warmequellen mit konstanter Leistung kann daher der Zeitschritt mit fort-
schreitender Simulationsdauer sukzessive vergrofiert werden, ohne den numerischen Fehler in der
Temperaturverteilung wesentlich zu vergréfiern.

Die Testreihen in diesem Unterkapitel haben gezeigt, dass eine adaptive Zeitschrittsteuerung
selbst bei grofiziigig gew#hlten Werten zu keinen Abweichungen der Temperaturverldufe im
Vergleich zu Losungen mit festen Zeitschritten fithrt. Stattdessen ergaben sich wesentliche
Verkiirzungen der notwendigen Iterationsschritte und damit der bendtigten Rechenzeit.

Es konnte weiterhin gezeigt werden, dass sich gepulste Vorgénge ndherungsweise durch eine mitt-
lere Dauerleistung beschreiben lassen, wenn die Kenntnis des mittleren Temperaturverlaufes im
Rechenvolumen ausreicht. In diesen Fillen betrifft dies in erster Linie die Temperaturschwankun-
gen im stationfren Zustand, deren Kenntnis nicht immer notwendig ist, insbesondere, wenn die
Schwankungen klein sind. Weitere Vereinfachungen sind dann durch die zusétzliche Anwendung
eines adaptiven Zeitschrittes bei Annahme einer mittleren Dauerleistung moglich, was zusétzlich
die Rechenzeit verkiirzt. Aufwéndige zeitliche Abldufe lassen sich so in den meisten Fillen stark
vereinfachen, ohne die Aussagekraft des numerischen Modells wesentlich zu reduzieren.
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Kapitel 6

Magnetische Hochfrequenzfelder bei
der Magnetresonanztomographie

6.1 Einfithrung und Motivation

6.1.1 Kernspinresonanz und Magnetresonanztomographie

Die Magnetresonanztomographie hat sich im Laufe der Jahre in der medizinischen Diagnostik
zu einem unverzichtbaren bildgebenden Verfahren entwickelt, welches inzwischen in der Lage ist,
hochaufgeloste drei- oder vierdimensionale Bilddatensidtze (Raum und Zeit) des menschlichen
Korpers zu erzeugen. Dabei wird das Phinomen der Kernspinresonanz genutzt, welches durch
die fundamentale Eigenschaft des Spins der Nukleonen des Atomkerns verursacht wird. In der
klassischen Darstellung wird der Kernspin oft mit dem intrinsischen Drehimpuls eines klassischen
Kreisels verglichen.

Die Spins aller Nukleonen eines Atomkerns koppeln zu einem gesamten Kernspin. Verschwindet
der Kernspin eines Atoms nicht, so besitzt dieser Atomkern ein messbares magnetisches Dipol-
moment. Betrachtet man makroskopisch eine grofie Anzahl an Atomen, z. B. einen menschlichen
Korper, so besitzt dieser Korper trotz der vorhandenen Kernspins seiner Atome makroskopisch
keine nach auflen messbare Magnetisierung, da sich durch die statistische Verteilung der einzel-
nen Dipolmomente im Raum die magnetischen Momente der Atomkerne gegenseitig aufheben.

Bringt man den K&rper in ein starkes statisches Magnetfeld, so richtet sich je nach Tempera-
tur ein gewisser Anteil der einzelnen Kernspins entlang der Richtung des dufleren statischen
Magnetfelds aus. Dadurch entsteht eine messbare makroskopische Magnetisierung, die bereits
mit den Methoden der klassischen Physik beschrieben werden kann. Durch Einstrahlen eines
hochfrequenten transversalen elektromagnetischen Pulses (HF-Puls) kann die makroskopische
Magnetisierung aus ihrer Ruhelage ausgelenkt werden und fiangt an, um das statische Magnet-
feld zu prézedieren.

Nach dem HF-Puls induziert die rotierende Magnetisierung in einer transversalen Messspule ein
HF-Signal, welches mit der Zeit aufgrund von Relaxationsphinomenen der Kernspins mit den
benachbarten Atomen (Spin-Gitter-Relaxation) oder anderen Kernspins (Spin-Spin-Relaxation)
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zerfallt. Um eine Auslenkung der makroskopischen Magnetisierung zu erreichen, muss die Fre-
quenz des eingestrahlten HF-Pulses eine Resonanzbedingung erfiillen. Die Prézessionswinkelge-
schwindigkeit w) der Magnetisierung ist abhéngig von der Stirke des dufleren statischen Feldes
und wird durch die Larmor-Frequenz f; beschrieben. Die Larmorfrequenz ist mit dem &ufleren
statischen Magnetfeld By liber das gyromagnetische Verhéltnis v des Kerns verkniipft:

w1:27r-f1:'y-BU. (61)

Fiir Protonen betrigt das gyromagnetische Verhéltnis v = 27 - 42,6 MHz/T. Bei einer statischen
Magnetfeldstiarke von 1 T muss daher mit einer Hochfrequenz von 42,6 MHz eingestrahlt werden,
um die makroskopische Magnetisierung auszulenken. Das gyromagnetische Verh&ltnis ist eine
Eigenschaft des Atomkerns. Sie ist fiir jedes Atom verschieden. Da der Mensch aber zu ca. 70 %
aus Wasser besteht, ist der dominierende Effekt die Resonanz der Wasserstoffkerne im Gewebe.

Der Grad der Auslenkung der Magnetisierung aus ihrer Ruhelage ist abhingig von der Dauer
der Hochfrequenzeinstrahlung ¢, und wird als Flipwinkel a bezeichnet. Mit Hilfe des gyromag-
netischen Verhéltnis kann berechnet werden, welche Stirke Bj der eingestrahlte transversale
HF-Puls fiir einen gewiinschten Flipwinkel o haben muss:

a
B, = . (6.2)
Y-t

Durch die HF-Pulse wird die Magnetisierung im Kérper ausgelenkt und mit Hilfe von Empfangs-
spulen der Zerfall der Quermagnetisierung gemessen. Dabei besitzt der Zerfall fiir jedes Gewebe
typische Eigenschaften, durch die die Art des Gewebes klassifiziert werden kann. Wird nun mit
Hilfe von zusétzlichen Gradientenspulen das statische Magnetfeld etwas im Raum verstimmt,
so ist eine ortsaufgeloste Akquisition der einzelnen Zerfallssignale und damit eine Bildgebung
moglich.

Grundlegende Darstellungen tiber die physikalischen Hintergriinde der Kernspinresonanz finden
sich bei HAKEN UND WOLF (1996) und BETHGE (1996). Weiterfiihrende Darstellungen, die
die Funktionsweise und Bilderzeugung bei der Magnetresonanztomographie, sowie den Aufbau
von Pulssequenzen beschreiben finden sich bei DOSSEL (2000), MORNEBURG (1995) und CHEN
unNnD Hourt (1989)

6.1.2 Erwirmung von Koérpergewebe und Implantaten

Die statischen Feldstérken von klinischen MR-Tomographen erstrecken sich heutzutage von 0,2 T
bis {iber 4,7 T. Die notwendigen Frequenzen der HF-Pulse zur Bildgebung liegen dadurch im
Bereich einiger Megahertz bis einiger hundert Megahertz. In diesem Frequenzbereich ist, wie in
Abschnitt 4.2.2 beschrieben, eine Stimulation von Muskel- oder Nervenzellen im menschlichen
Korper nicht mehr méglich. Stattdessen tiberwiegt die Erwarmung von Kérpergewebe durch die
Deposition von Feldenergie aufgrund Joulescher Verluste im Gewebe (vgl. dazu Abschnitt 4.2.3).

Neben der generellen Belastung des gesamten Organismus durch die Erwdrmung von Gewebe
ist die Erwérmung von metallischen Implantaten von besonderem Interesse. Durch die gute
Leitfahigkeit ist es moglich, dass sich durch die induzierten Stréme lokale Stellen mit hohen
Stromdichten an den Spitzen und Kanten der Implantate bilden. An diesen Stellen kénnen dann
hohe Temperaturen entstehen, die das benachbarte Kérpergewebe irreversibel schidigen kénnen.
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Solche Erwarmungen kénnen selbst dann entstehen, wenn die grundsétzliche thermische Bela-
stung durch das Hochfrequenzfeld fiir den gesamten Koérper noch in einem zuldssigen Rahmen
liegt (vgl. Abschnitt 4.3.2). Da eine generelle Vorhersage und Abschétzung lokaler thermischer
Schiden durch Implantate bisher nicht méglich ist, stellt ein medizinisches Implantat im Korper
eines Patienten bis heute eine Kontraindikation fiir eine Untersuchung im MR-Tomographen
dar, obwohl es bereits Vermutungen und klinische Erfahrungen gibt, dass es fir einige Patienten
moglich ist, sich gefahrlos einer MR-Untersuchung zu unterziehen. Dies wird spéter in Abschnitt
6.2.8 diskutiert.

Da aufgrund der zahlreichen physiologischen und technischen Parameter eine einfache Ableitung
von Sicherheitsregeln und Ausschlusskriterien fiir Implantatetréiger nicht moglich ist, beschéfti-
gen sich Forschergruppen in experimentellen in vivo und in vitro sowie in numerischen Studien
mit dieser Thematik mit teilweise gegensétzlichen Ergebnissen. Im néchsten Abschnitt werden
einige dieser Arbeiten vorgestellt.

6.1.3 Ergebnisse anderer Forschungsarbeiten

In der Literatur finden sich zahlreiche Studien zur Erw&rmungsproblematik von medizinischen
Implantaten im menschlichen Kérper wihrend MR-Untersuchungen. Am meisten wird tiber
Experimente mit salzwassergefiillten Phantomen berichtet, die anstelle eines Probanden in un-
terschiedlichen MR-Szenarien untersucht wurden. Weiterhin lassen sich einige Studien finden,
in denen mit Patienten mit Implantaten MR-Aufnahmen gemacht wurden. Seltener finden sich
numerische Studien mit hochaufgelésten Kérpermodellen oder gar zusétzlich mit Implantaten.

Aufgrund der Vielzahl an experimentellen Parametern ergeben die Studien scheinbar gegensitz-
liche Ergebnisse. Einige Autoren berichten {iber erhebliche Temperaturzunahmen insbesondere
an implantierten Elektroden, wohingegen andere Studien unter scheinbar &hnlichen Versuchs-
bedingungen keinen Nachweis einer schidlichen Temperaturzunahme erbringen kénnen. Aus
diesem Grund lassen sich anhand der vorhandenen Ergebnisse aus der Literatur keine generel-
len Schliisse ziehen, unter welchen Bedingungen eine MR-Untersuchung fiir einen Patienten mit
Implantat gefdhrlich werden kénnte und wann nicht. Dies liegt auch darin begriindet, dass sich
die Ergebnisse von Phantomstudien nur bedingt auf die menschliche Anatomie und Physiologie
tUbertragen lassen.

An der Heidelberger Kopfklinik entstand im Jahr 1999 eine Arbeit, bei der mit einem ku-
gelférmigen salzwassergefiillten Plexiglasphantom in drei verschiedenen MR-Tomographen die
Erwarmung einer Tiefenhirnstimulationselektrode zur Behandlung der Parkinsonkrankheit mit
Hilfe einer Infrarot-Wirmebildkamera gemessen wurde. Die MR-Tomographen hatten Grund-
feldstarken von 0,2 T bis 1,5 T. Die Stimulationselektrode wurde in der Mitte des Salzwas-
serphantoms platziert und auflerhalb des Phantoms mit einem Hirnschrittmacher verbunden.
Wéihrend der MR-Sequenz wurde die Erwdrmung und die in den Kabeln induzierte Spannung
beobachtet, die im Bereich einiger Volt lagen. Eine Erwarmung der Elektrode konnte aber in
keinem FExperiment nachgewiesen werden. Danach wurden 38 Patienten mit implantierten Tie-
fenhirnstimulationselektroden im MR-Tomographen untersucht, da in der Phantomstudie keine
Erwdrmungen nachgewiesen werden konnten. Wéahrend und nach der Bildaufnahme wurden bei
keinem der Patienten gesundheitliche Verdnderungen oder Auffilligkeiten beobachtet, so dass
aus den Ergebnissen geschlossen wurde, dass die MR-Tomographie mit dem verwendeten Tiefen-
hirnstimulationssystem unter den gewihlten MR-Parametern gefahrlos méglich ist (TRONNIER
ET AL., 1999B).
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Im Gegensatz zu dieser Studie wurden von LUECHINGER ET AL. (1999) Erwdrmungen an ver-
schiedenen Herzschrittmacherelektroden in einer Studie mit einem salzwassergefiillten Plexiglas-
phantom in einem MR-Tomographen bei 1,5 T nachgewiesen. Die Erwdrmungen waren so grof,
dass bei Patienten mit einer irreversiblen Schidigung des Gewebes gerechnet werden miisste. Es
zeigte sich, dass die Erwirmung vom Modell der Schrittmacherelektrode und ihrer Positionie-
rung im Phantom abhéingen. Eine Position in den Randbereichen des Phantoms erwies sich in
jedem Fall als ungiinstiger. Fiir die Temperaturmessung wurde ein faseroptisches Messsystem
verwendet. Darliber hinaus wurde in einer tierexperimentellen Studie die Erwdrmung an Herz-
schrittmacherelektroden in Schweinen untersucht. Die Messungen mit faseroptischen Sensoren
und Thermoelementen ergaben auch in diesem Fall wihrend einer Standardbildgebungssequenz
Erwdrmungen von iiber 30 °C. Eine Untersuchung des Schweineherzens nach der Bildgebung
konnte aber keine irreversiblen Schidigungen von Herzmuskelgewebe in den Schweineherzen
nachweisen (LUECHINGER, 2002).

Neben diesen Studien existieren weitere Arbeiten, die mitunter zu recht unterschiedlichen Ergeb-
nissen beziiglich der Erwirmung von Implantaten und der damit verbundenen Interpretationen
der Gefihrdung fiir die Patienten kommen (CHOU & CHAN, 1997; GREBMEIER ET AL., 1991,
YEUNG ET AL., 2002; SOMMER ET AL., 2000; ZHANG ET AL., 1993; NYENHUIS ET AL., 1999;
REZAI ET AL., 2002).

Numerische Studien werden bei der MR-Tomographie vor allen Dingen bei Entwurf und Entwick-
lung neuer Hochfrequenzspulen verwendet, um die resultierende Feldverteilung und -homogenitét
zu berechnen. Seltener finden sich Studien bei denen mit Modellen des menschlichen Korpers
die absorbierte Leistung im Gewebe abgeschitzt wird, um einen Hinweis {iber die spezifische
Absorptionsrate einer Spulenbauart zu erhalten.

Eine dieser Studien von SIMUNIG ET AL. (1996B) beschreibt die Leistungsabsorption in einem
einfachen Finite-Elemente-Modell eines Kopfes in einem MR-Tomographen (63,9 MHz). Mit
Hilfe des Kopfmodells wurden genauere Aussagen iiber lokale Stellen mit héherer Energiede-
position ermittelt. Bei der Untersuchung fiel vor allen Dingen auf, dass in der cerebrospinalen
Fliissigkeit, den Blutgefaien und der Muskulatur lokale Maxima der spezifischen Absorptions-
rate (SAR) beobachtet werden konnten, die aber alle unter den zuléssigen Grenzwerten lagen.
Eine einfache Abschitzung der Erwirmung identisch zu Gleichung (4.8) ergab keine unzuléissigen
Erwdrmungen.

Ahnlich zu dieser Studie finden sich 2D-SAR-Berechnungen fiir eine gréfere Auswahl von ,,Bird-
cage“-MR-Spulen mit einem 2D-Kopfmodell bei JIN UND CHEN (1997) mit &hnlichen Gréfen-
ordnungen fiir die spezifische Absorptionsrate, ebenso bei IBRAHIM ET AL. (2001) und COLLINS
UND SMITH (2001).

6.1.4 Inhalt der weiteren Unterkapitel

Im n&chsten Unterkapitel werden zunéchst eigene experimentelle Untersuchungen in Anlehnung
an die Experimente aus der Literatur vorgestellt, mit denen die Ergebnisse anderer Autoren
bestdtigt werden konnten. Ausgehend von der experimentellen Studie werden danach numeri-
sche Modelle von salzwassergefiillten Plexiglasphantomen vorgestellt. Anhand einer analytischen
Betrachtung werden N&herungslésungen fiir die Verteilung des elektrischen Feldes in einem qua-
derformigen Salzwasserphantom abgeleitet und mit den Ergebnissen einer numerischen Studie
verglichen. Mit den resultierenden Feldverteilungen wird gezeigt, wie die Energiedeposition im
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Abbildung 6.1: Bild (a) zeigt den experimentellen Aufbau bei der klinischen in vitro Phantomstudie
mit einem Oberkdrperphantom im MR-Tomographen mit Kopf- und Kérperspule. Im Inneren des
Phantoms wurden im Bereich des Kopfes eine Tiefenhirnstimulationselektrode eingebracht an deren

Spitze die Messfaser eines faseroptischen Temperaturmessgerates befestigt wurde, hier gekennzeich-
net durch einen gelben Pfeil in Bild (b).

Phantom vom Ort, der Leitfahigkeit der Salzlésung, der Frequenz und der Richtung des magneti-
schen Grundfelds abhéngen. Mit dieser Kenntnis sind Schliisse auf die zu erwartende Erwdrmung
moglich, die im Anschluss die Ableitung von einfachen Verhaltensregeln zur Risikominimierung
fir Patienten bei MR-Untersuchungen erlauben. Eine Diskussion der experimentellen Ergebnisse
im Vergleich zu den Erkenntnissen der numerischen Studie schlieft das Unterkapitel ab.

Danach werden numerische Untersuchungen an einem Kopfmodell mit implantierter Tiefenhirn-
stimulationselektrode und ein Oberkérpermodell mit Herzschrittmacherelektrode vorgestellt.
Dabei wird gezeigt, dass eine einfache Interpretation der Ergebnisse von Phantomstudien im
Hinblick auf eine Bewertung der Gefihrdung von Patienten nur eingeschrinkt moglich ist. Das
Kapitel schlieft mit einer Zusammenfassung aller relevanten Ergebnisse der eigenen experimen-
tellen und numerischen Studien ab.

6.2 Salzwasserphantome und Magnetresonanztomographie

6.2.1 Eigene experimentelle Arbeiten

Die experimentellen Studien an Salzwasserphantomen dienten bislang als wichtigste Grundlage
der Bewertung von méglichen Gefahren fiir Patienten durch die Erwarmung von Elektroden und
Implantaten bei der MR-Tomographie. Um eigene experimentelle Erfahrungen zu sammeln und
die bekannten experimentellen Studien nachzuvollziehen, wurde im Rahmen einer Diplomarbeit
ein eigenes Oberkdrperphantom (HUBERTUS) aufgebaut und an einer Herz- und einer Tiefen-
hirnstimulationselektrode Messungen in verschiedenen MR-Tomographen durchgefiihrt (TAB-
BERT, 2001).
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Abbildung 6.2: Erwarmung einer Tiefenhirnstimulationselektrode im MR-Tomographen wéhrend ei-
ner Standard Turbo Spin Echo Sequenz bei 63,9 MHz. Die Temperatur steigt in Bild (a) nach dem
Aktivieren der Sequenz beit = 18 s iiber einen Zeitraum von 8 s um 0,8 °C an und bleibt im weiteren
Verlauf der Sequenz weitgehend konstant. Nach Unterbrechung der Sequenz bei t = 39 s ergibt sich
in einem Zeitraum von iiber 20 s ein exponentieller Abfall der Temperatur an der Elektrodenspitze
bis auf ihren Ausgangswert bei 18,9 °C. In Bild (b) sind die Messergebnisse an einer Herzschritt-
macherlektrode bei gleichen Sequenzparametern dargestellt. Nach Aktivieren der Sequenz steigt die
Temperatur innerhalb von wenigen Sekunden um 7,5 °C an, um nach Deaktivieren der Sequenz
wieder ihren Ausgangswert in einem exponentiellen Abfall zu erreichen.

Abbildung 6.1 zeigt den experimentellen Aufbau des Oberk&rperphantoms, welches aus einer Ple-
xiglaswanne mit einem kleinen Kopfteil besteht, die dem Oberkérper eines Menschen nachemp-
funden ist. Die Wanne ist durch ein Trennkreuz im Inneren in vier Kompartments aufgeteilt, die
durch einige Locher miteinander und mit dem Kopfteil verbunden sind. In den einzelnen Kom-
partments kénnen durch seitliche Fithrungsleisten in verschiedenen H6hen Plastikgitter eingelegt
werden, um Schrittmacher und Kabel darauf zu fixieren. Die Elektrodenkabel kénnen durch die
vorhandenen Verbindungslécher in und durch andere Kompartments verlegt werden. Zusitz-
liche Fiihrungsbohrungen und -systeme erméglichen die Fixierung von faseroptischen Tempe-
raturmessfithlern an den untersuchten Herz- und Hirnelektroden und an den Schrittmachern
im Phantom. An der Aussenwand des Phantoms kénnen an jeder Seite versilberte Kupferelek-
troden angebracht werden, um die Potentiale an der Oberfliche der Fliissigkeit wihrend einer
MR-Sequenz zu messen. Weiterhin wurden Vorrichtungen konzipiert, um die induzierten Span-
nungen an den Zuleitungen der Elektroden wihrend der experimentellen Untersuchungen zu
erfassen.

Das Phantom wurde in insgesamt drei MR-Tomographen mit unterschiedlichen Grund-
feldstdrken und -ausrichtungen untersucht (0,2 T, 1,5 T und 3,0 T). Bei den Experimenten
wurden hochfrequenzintensive Turbo Spin Echo (TSE) Sequenzen aus der téglichen klinischen
Anwendung mit einer grolen Anzahl an HF-Pulsen verwendet. Abbildung 6.2 zeigt beispielhaft
zwei Temperaturverldufe an den Schrittmacherlelektroden.

Es zeigte sich, dass die gemessenen Erwirmungen an den Elektrodenspitzen abhingig sind von
der Form der Elektrode, der Lage des Elektrodenkabels im Phantom, der Ausrichtung und Stéarke
des magnetischen Grundfelds und der Dauer des HF-Pulses. Im Experiment konnte eine maxi-
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male Erwdrmung von ca. 8 K bei einer Herzschrittmacherelektrode mit spiralférmiger Spitze
in einem 1,5 T MR-Tomographen mit horizontaler statischer Grundfeldrichtung nachgewiesen
werden. Entgegen den ersten Erwartungen zeigte sich, dass die Erwdrmung an der Herzschritt-
macherelektrode im 3 T MR-Tomographen unter den Werten der Messung im 1,5 T-Gerét lag.
Bei 0,2 T Grundfeldstirke mit vertikaler Ausrichtung des statischen Magnetfeldes konnten keine
Erwdrmungen nachgewiesen werden.

Die Messwerte dieser Studie am 1,5 T MR-Tomographen reihen sich ein in die Angaben anderer
Autoren, die in #hnlichen Szenarien vergleichbare Messergebnisse erhalten haben (CHOU &
CHAN, 1997; REZAI ET AL., 2002; SOMMER ET AL., 2000).

Die Messung an der Tiefenhirnstimulationselektrode ergab lediglich Erwérmungen bis zu 0,8 K
wéhrend einer TSE-Sequenz im 1,5 T MR-Tomographen. In den anderen Geridten konnte an
dieser Elektrode keine Erwdrmung nachgewiesen werden. Dieses Ergebnis wird in erster Linie
auf die Elektrodenbauform als Halbkugel zurtickgefiihrt, welche tiber keine Spitzen und Kanten
verfiigt. Entgegen den Ergebnissen von TRONNIER ET AL. (1999B) konnten mit der Tiefenhirn-
stimulationselektrode Erwdrmungen, wenn auch sehr gering, nachgewiesen werden. Bei allen
untersuchten Szenarien konnte keine Erwirmung der Schrittmachergehiuse selbst festgestellt
werden.

Neben magnetischen Hochfrequenzfeldern werden gepulste magnetische Gradientenfelder zur
Ortskodierung mit Schaltzeiten von teilweise weniger als einer Millisekunde benutzt. Der Einfluss
dieser Felder wurde ebenfalls untersucht. Bei ausgeschalteten HF-Pulsen konnte aber durch die
Gradientenfelder allein keine Erwdrmung an den Elektroden erzeugt werden.

Die Erwarmungsmessungen wurden durch die Messung der induzierten Spannungen erginzt.
Dabei wurden an den Elektrodenkabeln und der Phantomoberfliche je nach Anordnung Span-
nungen im Bereich von weniger als 1 V aber auch bis zu 174 V nachgewiesen. Dieses Ergebnis
liegt ebenfalls im Rahmen anderer publizierter Beobachtungen (TRONNIER ET AL., 1999B).

Die Ergebnisse der experimentellen Untersuchungen wurden bereits verdffentlicht (GOLOMBECK
ET AL., 2001B; GOLOMBECK ET AL., 2001A; TABBERT ET AL., 2001). Eine ausfiihrlichere
Darstellung der Messaufbauten, insbesondere des Oberkérperphantoms, finden sich in der Di-
plomarbeit von TABBERT (2001).

Die Ergebnisse dieser Studie zeigten, dass bei der MR-Tomographie unter gewissen Voraus-
setzungen relevante Erwidrmungen an den Spitzen von Herz- und Hirnschrittmacherelektroden
auftreten, die im ungiinstigsten Fall auch eine irreversible Schidigung des Gewebes hervorrufen
kénnten. In den Randbereichen des Phantoms traten dabei gréflere Erwérmungen auf, als in den
Randbereichen.

Die Abhéangigkeit der Erwirmung eines Kabels oder Elektrode von seiner Lage in einem Salz-
wasserphantom lassen eine genauere Betrachtung der elektrischen Feldverteilung in der Koch-
salzlgsung bei HF-Einstrahlung notwendig erscheinen, da nach Gleichung (4.7) die deponierte
Leistung in der Flissigkeit und damit die Erwirmung vom Quadrat des elektrischen Feldes
abhingt. Einige feldtheoretische Uberlegungen und die Ergebnisse einer numerischen Studie
werden in den nichsten Abschnitten vorgestellt.
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6.2.2 Die allgemeine Wellengleichung und ihre Grenzfille
6.2.2.1 Die allgemeine Wellengleichung

Die Wellengleichung fiir das elektrische Feld Ein homogenen Medien lautet in ihrer allgemeinsten
Form (LEHNER, 1996):

S s(e = OF 62E
AB -V (V-E)=po 4 pe" 6.3
AT T (63)
Unter der Annahme, dass keine Raumladungen existieren, wie z. B. im betrachteten quaderférmi-
gen Plexiglasphantom, das mit einem leitfahigen Medium gefiillt ist, vereinfacht sich Gleichung
(6.3). Die Divergenz des elektrische Feldes ist in diesem Fall gleich Null. So ergibt sich

5 E 2F

AE = ;waa—t + ,usaa? . (6.4)
Wie bereits in Unterkapitel 2.3 beschrieben wurde, werden bei sinusférmiger Feldanregung
zweckmiBigerweise komplexe Feldgréfien eingefiihrt, da dies die Losung der Differentialgleichung
(6.4) vereinfacht (JACKSON, 1975). Die komplexen Gréfien werden hierbei analog zu Unterkapi-
tel 2.3 durch Unterstreichung hervorgehoben. In Anlehnung an die Konventionen des Feldrech-
nungsprogrammes MAFIA teilt sich die Amplitude der Felder in einen Real- und Imaginérteil
auf. Die komplexe Darstellung ist natiirlich dquivalent zur Angabe der Feldgréfien als Ampli-
tudenabsolutbetrag und Phase. Die Gleichungen (2.25) und (2.26) zeigen die Zusammenhinge
zwischen komplexer Amplitude sowie Betrag und Phase. Bei sinusférmiger Feldanregung stellt
der Imaginérteil der komplexen Amplitude die Feldverteilung gerade eine Viertelperiode nach
dem Realteil dar. Fiir das elektrische Feld wird folgender Zusammenhang eingefiihrt:

E(m,y,z,t) = E(m,y,z) .ejwt .

Verwendet man diese komplexen Feldgréfien, so kann man die Ableitungen des elektrischen
Feldes in Gleichung (6.4) nach der Zeit eliminieren. Die erste und zweite Ableitung nach der
Zeit des komplexen elektrischen Feldes ergibt sich zu

8 — — . —
5 L@y, 2,1) = jw- E(@,y,2) - e = jw - E(z,y,2,1)

52 . . , .
wﬂ(‘ra Y, 2, t) = (jw)Q : E(xa Y, Z) : e'lth = _w2 : E(xa Y, %, t) .
Damit kann Gleichung (6.4) nach Kiirzen der Zeitabhingigkeit e/“* umgeformt werden zu:

AE(z,y,2) = jupcE(z,y,z) — o peE(z,y,2) . (6.5)

Die dielektrischen Materialparameter o, p und ¢ konnen bei Berticksichtigung von Verlusten
auch komplex sein (vgl. Abschnitt 3.3.1). Bei den hier diskutierten numerischen Modellen spie-
len aber magnetische Verluste keine Rolle. Weiterhin werden die dielektrischen Verluste bei
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monofrequenter Feldanregung bereits in der Leitfihigkeit o mit berticksichtigt, so dass die di-
elektrischen Materialparameter in der weiteren Betrachtung analog zur Darstellung in Abschnitt
2.3.2 rein reell sind.

Die physikalisch relevanten Losungen ergeben sich jeweils aus Betrachtung der Losungen der
Differentialgleichung, sowie den Randbedingungen an den Réndern des betrachteten Rechenvo-
lumens. Aus der komplexen Amplitude ergibt sich der Betrag und die Phase des Feldes.

Abschnitt A.1 im Anhang gibt eine kurze Ubersicht iiber den allgemeinen Weg zur Losung
dieser Differentialgleichung mit einem Produktansatz. Danach ergeben sich bei einer Losung des
Problems in kartesischen Koordinaten fiir die einzelnen Komponenten des elektrischen Feldes
Produkte von Funktionen der Art f(z) = C - e*7%7, Eine Losung von Gleichung (6.5) fiir das
gesamte komplexe elektrische Feld in kartesischen Koordinaten kann dann geschrieben werden

als (siehe auch Gleichung (A.9)):

|ty

(@, y,2,t) = | [ (2)-g (y) hy(z) |- . (6.6)

6.2.3 Grenzfille der Wellengleichung

Die allgemeine Wellengleichung (6.5) enthélt einen Wellenausbreitungs- und einen Diffusions-
term. Man kann daher zwei Grenzfélle betrachten, wenn man von denjenigen Féllen absieht in der
die rechte Seite von Gleichung (6.5) gleich Null oder skalar ist (Laplace- und Poisson-Gleichung).
Die Diskussion der Grenzfille hier orientiert sich an den dielektrischen Parametern o, € und der
Frequenz w = 27 - f. Je nach Grofle dieser Parameter dominiert entweder der Wellenausbrei-
tungsterm oder der Diffusionsterm. In einer guten N&herung kann dann im Grenzfall jeweils einer
dieser Terme vernachléssigt werden. Man erhélt dann zum einen die Helmholtz-Wellengleichung
oder die Diffusions-Differentialgleichung als quasistationéire Niherung (KUPFMULLER & KOHN,
2000).

Der menschliche Kérper liegt bei vielen Frequenzen allerdings zwischen diesen beiden Grenzfillen
und stellt somit ein leitfihiges Dielektrikum dar, womit beide Naherungen ausscheiden und so-
wohl der Wellenausbreitungsterm, als auch der Diffusionsterm in der Wellengleichung bertick-
sichtigt werden miissen. In den folgenden Abschnitten wird zunfchst der allgemeine Fall eines
leitenden Dielektrikums behandelt und danach die beiden Grenzfélle fiir ideale Isolatoren und
sehr gute Leiter vorgestellt und diskutiert.

6.2.3.1 Leitfihige Dielektrika

In leitfihigen Dielektrika miissen in Gleichung (6.5) der Wellenausbreitungs- und der Diffu-
sionsterm berticksichtigt werden. Zur Losung dieser Differentialgleichung wird die komplexe
Separationskonstante k iiber die Dispersionsbeziehung

k2 = wlue — juuo (6.7)
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eingefiihrt (vgl. auch Unterkapitel A.1im Anhang). Diese im Fall leitfihiger Dielektrika komplexe
Konstante k teilt sich auf in einen Real- und einen Imaginérteil:

k=k +jk" . (6.8)

Setzt man die Definition (6.8) fiir die komplexe Konstante k in die Dispersionsgleichung (6.7)
ein, so kann man Real- und Imaginérteil separieren und getrennt voneinander bestimmen.

B2 = k2 25k K — kP = e — jwpo . (6.9)

Die Trennung von Real- und Imaginérteil ergibt:

k2 — k" —w?pue =0, (6.10)
26'k" + wpo =0 . (6.11)
Daraus folgt fiir £”:
L — _wuo
2k

Setzt man dies in Gleichung (6.10) ein, so ergibt sich fiir k&’ eine quadratische Gleichung:

w?p2o?

B4 2 ek —
W e 1

=0. (6.12)

Die Losungen dieser Gleichung sind nach LEHNER (1996)

2
o He g

Die Konstante k' soll reell sein, daher kommt von den beiden Vorzeichen unter der Wurzel nur
das positive in Betracht:

2
K =t “—E< 1+ —2 +1>. (6.13)

2 w2e?

Setzt man dieses Ergebnis in Gleichung (6.11) ein und 16st nach der Konstanten k" auf, so ergibt
sich:

2
B = %( 1+U——1). (6.14)

W2e2
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Diese Separationskonstante fliefit direkt als Parameter in die Losungen der allgemeinen Wellen-
gleichung (6.5) mit ein. Der Realteil k&’ von k wird auch Phasenkonstante genannt, der imaginére
Anteil k" auch Dimpfungskonstante. In Anhang A.1 wird die Bedeutung der Separationskon-
stante an einem Beispiel verdeutlicht.

Im folgenden werden die Grenzfille eines idealen Isolators und eines guten Leiters diskutiert und
von den allgemeinen Formeln (6.13) und (6.14) fiir die Separationskonstante k& N&herungslgsun-
gen abgeleitet.

6.2.3.2 Ideale Isolatoren

In Isolatoren und schlechten Leitern mit kleiner Leitfdhigkeit 0 und hoher Frequenz w dominiert
der Wellenausbreitungsterm. Ein Grenzfall ist insbesondere der Fall des Isolators mit o = 0 S/m.
Gleichung (6.5) reduziert sich dann zu

AE(2,y,2) = w?peE(z,y,7) . (6.15)

Diese Gleichung kann weiter zur bekannten Wellengleichung fiir homogene, ladungsfreie und
nichtleitende Medien umgeformt werden:

(A — w?pe) E(x,y,2) =0. (6.16)

In diesem Sonderfall ist nach LEHNER die bereits eingefiihrte Konstante £ reell und die Losun-
gen dieser Wellengleichung fiir harmonische Anregungen sind Sinus- und Kosinusfunktionen als
Realteile der allgemeinen Losung mit komplexer Zeitabhingigkeit.

Lost man die Wellengleichung in kartesischen Koordinaten fiir jede Raumrichtung, so bilden die
einzelnen Komponenten k; der Separationskonstante den Wellenzahlvektor k. Die Formel fiir die
k; ergibt sich aus der Gleichung (6.13) fiir die &' unter der Annahme, dass entweder o =0 S/m
oder 0 < we gilt und damit ebenso der Diffusionsterm in Gleichung (6.5) vernachléssigt werden
kann. Aus Gleichung (6.13) folgt dann fiir diesen Grenzfall fiir die Werte der Komponenten £;
des Wellenzahlvektors:

ki = wy/El . (6.17)

6.2.3.3 Gute Leiter

Wenn im betrachteten Medium bei hinreichend grofier Leitfahigkeit o und niedrigen Frequenzen
w der Zusammenhang o > we oder gleichbedeutend ;Z > 1 gilt, dann vereinfachen sich die

Gleichungen (6.13) und (6.14) zu:
IARSN ARSI % ) (6.18)

Dies entspricht der Losung, die man erhalten hitte, wenn man in der Dispersionsbeziehung (6.7)
von Anfang an den Beitrag des Wellenausbreitungsterms —w?pe vernachlissigt hitte und das
Problem gemif dem Ansatz aus Gleichung (6.9) gelost hitte.
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Die Vernachléssigung des Wellenausbreitungsterms in Gleichung (6.5) bedeutet physikalisch be-
trachtet, dass der Verschiebungsstrom in der ersten Maxwell-Gleichung vernachlidssigt wird.
Anschaulicher kann man sagen, dass die oszillierenden elektrischen Felder in diesem Fall durch
entsprechende Ladungsbewegungen und daraus resultierende Raumladungsfelder hinreichend
schnell kompensiert werden kénnen. Gleichung (6.5) vereinfacht sich dann zu:

—

AE(ZE, Y, Z) = jwﬂaﬁ(x> Y, Z) . (619)

Diese Gleichung kann weiter zur bekannten Diffusionsgleichung fiir homogene, ladungsfreie und
leitende Medien umgeformt werden:

(A — jwpo) - E=0. (6.20)

Die Lésungen dieser Gleichung fiir harmonische Anregungen sind ebenfalls Sinus- und Kosinus-
funktionen, die mit einem exponentiellen Ddmpfungsanteil multipliziert werden. Ein Beispiel
dazu findet sich in Anhang A.1.

6.2.4 Losung der Wellengleichung fiir ein quaderférmiges Phantom
6.2.4.1 Modellierung der Hochfrequenzanregung

Die Auslenkung der ausgerichteten magnetischen Dipolmomente (Spins) der Protonen erfolgt
im MR-Tomographen, wie bereits in Abschnitt 6.1.1 beschrieben, durch eine rotierende magne-
tische Flussdichte, die der Larmor-Bedingung (6.1) gentigt. Es bieten sich in der numerischen
Feldrechnung mehrere Moglichkeiten an, solch eine Feldanregung zu modellieren. Bei allen Mo-
dellen dieser Arbeit wurde die Feldanregung durch zwei Helmholtzspulenpaare realisiert, von
denen ein Spulenpaar mit einem um 90° phasenverschobenen Strom gespeist wurde, um die
rotierende Flussdichte zu erzeugen.

Parallele kreisrunde Spulenpaare, deren Abstand gleich dem Spulenradius ist, erfiillen die Helm-
holtzbedingung und zeichnen sich durch ihre hohe Feldhomogenitit in ihrem Zentrum aus. Der
homogene Feldbereich ist abhingig vom Radius der Spulen und muss bei der Erstellung nu-
merischer Modelle bedacht werden. Die einfache Modellierung solcher Spulenpaare in der ver-
wendeten Feldrechnungssoftware ist ein weiterer Vorteil. Umfassende Informationen und eine
Formelsammlung fiir Helmholtzspulen finden sich in HUBER UND URBAN (1995).

Abbildung 6.3 zeigt eine schematische Ubersicht des numerischen Modells mit der Zuordnung
der Raumrichtungen zu den wesentlichen elektrischen Feldern und magnetischen Flussdichten.
Der Mittelpunkt des Phantoms liegt genau im Koordinatenursprung. Die Kanten des Phantoms
sind parallel zu den Koordinatenachsen ausgerichtet. Die Kantenldngen des Phantoms sind in
z-, y- und z-Richtung durch o, yg und +zy vorgegeben. Das statische Grundfeld ist gemif
den Konventionen in der MR-Tomographie parallel zur z-Richtung ausgerichtet.

Die beiden Helmholtzspulenpaare sind senkrecht zur - und y-Achse angeordnet. Sie erzeugen
die magnetischen Flussdichten élm und Ely, welche im Bereich des Phantoms eine homogene
magnetische Flussdichte erzeugen. Die Superposition beider Felder erzeugt mit einer Phasenver-
schiebung der anregenden Strome von 90° einen Flussdichtevektor By der senkrecht zu B(] um
die z-Achse mit der Larmorfrequenz wy rotiert.
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Abbildung 6.3: Schemazeichnung des Salzwasserphantoms im MR-Tomographen. Das statische

Grundfeld mit der Flussdichte By ist parallel zur z-Achse. Die beiden Helmholtzspulenpaare erzeugen

durch ihre phasenverschobene Anregung eine rotierende magnetischen Flussdichte By, die sich aus

den mit einer Phasenverschiebung von /2 oszillierenden Flussdichten By, und B1y zusammensetzt.

Diese wiederum erzeugen ihrerseits abwechselnd rotierende elektrische Felder E,, und Ey, im Inneren
des mit einer Salzlsung gefiiliten Phantoms.

Die Stédrke der anregenden Flussdichte B hiangt mit der bendtigten Pulsdauer des anregenden
HF-Pulses zusammen. Sie ergibt sich gemifi Gleichung (6.2) aus dem gewiinschten Flipwin-
kel o und der Pulsdauer ¢,. Die magnetische Flussdichte B ist proportional zur anregenden
Stromstérke durch die Spulen (HUBER & URBAN, 1995).

Jede der hochfrequenten Flussdichten erzeugt wiederum nach Gleichung (2.1) ein elektrisches
Wirbelfeld im Inneren des Salzwasserphantoms. Die Superposition der beiden hochfrequenten
anregenden Flussdichten erzeugt ihrerseits ein komplexes elektrisches Wirbelfeld, welches um
die z-Achse rotiert.

Ausgehend von der Anordnung nach Abbildung 6.3 kann das Primérfeld der hochfrequenten
magnetischen Flussdichte B; folgendermaflen definiert werden:

By, - cos (wt + 1)
él(m,y, z,t) = | By - cos (wt + p2) . (6.21)
Bi, - cos (wt + ¢3)

Vernachlassigt man die durch die im Salzwasserphantom induzierten Strome entstehenden ma-
gnetischen Sekundérfelder, dann ist unter Annahme dieser Ndherung im beschriebenen Beispiel
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die z-Komponente von él gleich Null. Ist die Amplitude der z- und der y-Komponente von él
gleich grofl und wurde die Phasenverschiebung zwischen der - und der y-Komponente auf 90°
oder 7/2 festgelegt, kann auch hier fiir die magnetische Induktion die bereits gezeigte komplexe
Notation eingefiihrt werden:

0
By(2,y,7,1) = Biay 0O |+ 1 eIt (6.22)
0 0

Nach der ersten Maxwell-Gleichung (2.1) entspricht die Rotation des komplexen elektrischen
Feldes der negativen ersten Ableitung nach der Zeit der komplexen magnetischen Induktion:

OE,/0y — OE, [0z 5 1
VxE=| 0E,/9z—0E,/0x -efwt:—gglz—jw-&w- i et (6.23)

Die rechte Seite von Gleichung (6.23) gibt Hinweise iiber die Struktur méglicher Losungen fiir das
elektrische Feld E Da die z-Komponente der magnetischen Flussdichte El Null ist, kénnen die
Abhéngigkeiten der Losungsfunktionen des elektrischen Feldes von den Raumkoordinaten wei-
ter vereinfacht werden. Im folgenden wird willkiirlich ein einfacher Ansatz gew#hlt, in der die
Koordinatenabhingigkeiten der einzelnen Komponenten der Lésungsfunktion fiir das elektrische
Feld reduziert werden, so dass nur die in der Rotation in Gleichung (6.23) auftretenden Koor-
dinaten der partiellen Ableitungen als Verdnderliche der einzelnen elektrischen Komponenten
berticksichtigt werden. Die Abh&ngigkeit einzelner Feldkomponenten von den anderen Koordi-
naten wird als konstant angenommen. So wird z. B. die z-Komponente des elektrischen Feldes
als eine von der z-Koordinate abhéngige Funktion angenommen. Weiterhin muss ber{icksichtigt
werden, dass sich an den Réndern des Phantoms die jeweils zum Seitenrand senkrechten elektri-
schen Feldekomponenten zu Null ergeben miissen. Dadurch besitzt z. B. die z-Komponente des
elektrischen Feldes neben der z- auch eine z-Abhéngigkeit. Dies gilt auch analog fiir die y- und
die z-Komponente, die zusitzlich eine y- bzw. z-Abhingigkeit besitzen. Es ergibt sich folgender
Ansatz fiir das elektrische Feld:

E,(z,2)

E(z,y,z,t) = E,(y,2) Celvt (6.24)

E (z,y,2)

Fiir die Berechnung der Energieabsorption im Phantom ist nach Gleichung (4.7) nur die Ampli-
tude des elektrischen Feldes von Bedeutung. Die folgende Betrachtung konzentriert sich daher
auf die Berechnung der Maximalwerte des elektrischen Feldes. Etwaige Phasenverschiebungen,
die ebenfalls aus dem komplexen elektrischen Feld E berechnet werden kénnen, werden nicht
berticksichtigt.

6.2.4.2 Losungen der Wellengleichung mit Randbedingungen

Um das elektrische Feld im Inneren des leitfahigen Salzwasserphantoms zu berechnen, muss die
Wellengleichung (6.5) gelost werden. Die Losungen dieser Gleichung sind z. B. Produkte von
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Funktionen von der Form (6.6). Fiir die weitere Betrachtung ist es zweckméBig, die einzelnen
Produktterme der Losungsfunktion getrennt zu betrachten und erst spiter wieder zusammen zu
setzen. Gleichung (6.24) kann aufgespalten werden in:

L, (x)
Epm(z,y,2) = Ey(z) : E: ) = EAmA : EAmB . (6.25)

Im folgenden wird zun&chst der Anteil E Am,. betrachtet. Eine weitere Vereinfachung bei der

A
Berechnung der Amplitude von E,,,, ergibt sich aus der Tatsache, dass die beiden senkrecht

zueinander stehenden Spulenpaare getrennt voneinander betrachtet und die Ergebnisse danach
superponiert werden kénnen. Die Amplitude des elektrischen Feldes £ 4,  wird daher zunéchst

in zwei Teile EAmA‘l und EAmAQ fiir beide Spulenpaare zerlegt. Aus Gleichung (6.25) ergeben
sich dann folgende Abhingigkeiten:

E,(2)

Eppy @y, 2)=] 0
E,(z)

0
Bpy,(@9:2) = | E,(2)
E,(y)

Verwendet man die im Anhang A.1 abgeleitete Losung (A.9) und die Umformung fiir die kom-
plexe Separationskonstante k gem#f Gleichung (6.8), so ergeben sich als Lésungen fiir die Am-
plituden des elektrischen Feldes:

Czl . e_.jkélz . ek‘;'lz + CZ2 . ejkélz . e_kglz
Epm,,(@,y,2) = 0 , (6.26)
Cys - e_.jk;c3$ . ek;c/.'iw + Cse - e.jk;csaf . e—k;’3w

0
= SL! .11 AL L
EAmA 2(177 Y, Z) = CZ3 : e—]kzzz : ekzzz + Cz4 : ejkzzz - € krn% . (627)
Cy5 . e—jk;g,y . ek;’sy + CyG . ejk;sy . e—k;lgy

Die Betrige der einzelnen komplexen Komponenten der Amplituden EAmA ,und EAmA , ergeben
sich gemiB der Umformung nach Gleichung (2.25). Die genauen Rechenschritte sind in Anhang
A.2 aufgefiihrt. Es ergeben sich die reellen Vektoren F Amy und Eapn, Azt

\/031€2k;,12 + 0326_2]“;'1Z +2C,1Cy cos (2k., z)
EAmAJ = |E|Am1 ('737 Y, Z) = 0 s (628)
\/035621‘3;/3”” + 0366_2k;</3$ + 2C5Cxe cos (2k. )
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0
EAIIl_A,z = |E|Amz ('737 Y, Z) = \/03362k;’2z + 0346_2]8;,22 + 2C,3C4 cos (2k222) . (629)
\/03562’“933 4 0366_2]“;'/3” + 2Cy5Cy6 cos (2k;3y)

Die Gleichungen (6.28) und (6.29) kénnen im Fall eines quaderformigen Phantoms durch genaue-
re Betrachtung der geometrischen Anordnung und der Randbedingungen noch weiter vereinfacht
werden. Legt man den Koordinatenursprung genau in den geometrischen Mittelpunkt des Phan-
toms und ordnet die Spulenpaare symmetrisch zum Ursprung an, so verschwindet das elektrische
Feld im Mittelpunkt des Phantoms und man erhilt als Randbedingung E)Amkl/z (0,0,0) = 0.

Da die Kosinusterme in den Gleichung (6.28) und (6.29) im Ursprung nicht verschwinden, wie
auch die exponentiellen Dampfungsterme, miissen die Konstanten C' so gewdhlt werden, dass
diese Randbedingung erfiillt wird. Die Kosinus- sowie die Exponentialfunktion ergeben bei Ein-
setzen von 0 als Funktionswert 1. Daraus ergibt sich fiir die Konstanten C' am Beispiel der
x-Komponente von Gleichung (6.28) folgender Zusammenhang:

C% +C% +20,1Cp=0.

Die einzige reelle nicht-triviale Losung dieser Gleichung ist:

Ci=-Cy .

Wie leicht ersichtlich ist, gilt gleiches auch fiir die Konstanten Cy5 und Cyg, sowie den Konstanten

C' aus Gleichung (6.29):

Cx5 = —Ux6
Cz3 = —Ugz
Cys = —Cyg .

Als Folge davon kann man die Konstanten C' in den Gleichungen (6.28) und (6.29) ausklammern
und es bleiben Kombinationen von Exponentialfunktionen iibrig. In diesem besonderen Fall ist es
moglich, die Exponentialfunktionen gemif der Identitéit cosh x = % (e + e™*) in hyperbolische
Kosinusfunktionen umzuwandeln (BRONSTEJN & SEMENDJAEV, 1991). Die Gleichungen lassen
sich daher weiter vereinfachen zu:

Cy1 - \/2cosh (2k!,z) — 2 cos (2K, z)
E_:AIIIA_’]_ = 0 ) (630)

Cys - \/2 cosh (2kl5z) — 2 cos (2k. )
0
E:,hn&2 = | Cus-+/2cosh (2k",2) — 2 cos (2k52) . (6.31)

Cys - \/2 cosh (2ky3y) — 2 cos (2ky3y)
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Eine weitere Vereinfachung dieser Gleichungen ergibt sich bei Betrachtung der Konstanten k.
Vernachldssigt man die moéglichen Reflexionen des elektrischen Feldes an den Réndern des Phan-
toms bei den Ubergiéingen von Salzlssung in Plexiglas und danach in Luft, so ergeben sich nach
LEHNER (1996) als Losungen fiir das elektrische Feld homogene Wellen (sh. Anhang A.1), die
sich entlang ausgezeichneter Raumrichtungen ausbreiten. Die einzelnen Vektorkomponenten der
beiden Amplituden des elektrischen Feldes EAHIA.l und EAITIA.Q sind nach Gleichung (6.30) und
(6.31) nur von einer Raumkoordinate und damit nur von einer der komplexen Konstanten k.,
k, oder k, abhéngig.

Betrachtet man die Dispersionsbeziehung (6.7) fiir jede einzelne Komponente, so erkennt man,
dass in diesem Fall fiir alle komplexen Konstanten &, Ey und k, der gleiche Zusammenhang
gilt, da die dielektrischen Parameter des Salzwasserphantoms in allen Raumrichtungen homogen
sind. Die Konstanten k; und damit auch die Konstanten k. und k! in den Gleichungen (6.30)
und (6.31) sind somit gleich grof. Ihre Werte ergeben sich dann aus den bereits abgeleiteten

Gleichungen (6.13) und (6.14).

Ist die Form des Salzwasserphantoms ein Wiirfel oder Quader mit mindestens zwei gleich langen
Seiten, so sind weitere Vereinfachungen in den Gleichungen (6.30) und (6.31) beziiglich der
Konstanten C' mdglich. Im Falle eines Wiirfels haben alle Konstanten C' den gleichen Wert.
Damit und mit den Vereinfachungen fiir die Konstanten k& kann man die Gleichungen fiir die
Betrige der Amplituden des elektrischen Feldes in ihrer einfachsten Form angeben:

\/2cosh (2k"z) — 2 cos (2k'z)
Epm,, =C- 0 : (6.32)
/2 cosh (2k"z) — 2 cos (2k'z)

0
E’AmA’2 =C- | +/2cosh(2k"z) —2cos (2k'z) | . (6.33)
/2 cosh (2k"y) — 2 cos (2k'y)

Zuletzt muss noch der Gesamtbetrag der Teilamplitude E'AmA aus den beiden Teillésungen
E_:AmA1 und E_)Am,m berechnet werden. Die beiden Teillosungen stellen jeweils die Maximalwerte
des elektrischen Feldes zweier sinusformiger Anregungen mit gleicher Frequenz dar, die gegenein-
ander um eine Viertelperiode phasenverschoben sind. Diesem Umstand ist bei der Uberlagerung
Rechnung zu tragen. Dies spielt fiir die z- und die y-Komponente der Losungen zwar keine Rol-
le, da sie jeweils nur in einer der beiden Losungsfunktionen einen von Null verschiedenen Wert
haben. Geht man aufgrund des homogenen Problems von einer konstanten Phasenverschiebung
zwischen beiden Losungen aus, so ergibt sich die z-Komponente der Gesamtamplitude als Wurzel
aus der Summe der Betragsquadrate der z-Komponenten beider Teillosungen. Der Gesamtbetrag
der Teilamplitude EAm , des elektrischen Feldes ergibt sich damit zu:

/2 cosh (2k"2) — 2 cos (2k'z)
Epm, =C- /2 cosh (2k"2) — 2 cos (2k/z) . (6.34)
/2 cosh (2k"y) — 2 cos (2k'y) + 2 cosh (2k"z) — 2 cos (2k'z)
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Die Teilamplitude E Amp hat die Funktion, die Normalkomponenten des elektrischen Feldes
an den Phantomrindern verschwinden zu lassen, da ein Stromfluss aus dem Salzwasserphan-
tom heraus nicht méglich ist. Um diese Randbedingung zu erfiillen, ergibt sich nach JACKSON
ausgehend von der im Anhang A.l gezeigten Grundlosung (A.6) eine Superposition einzelner
Kosinusfunktionen als Reihenentwicklung. Die Linearkombination von Kosinusfunktionen, die
z. B. die z-Komponente der elektrischen Feldstéirke in Gleichung (6.24) an den Réndern des
Phantoms bei zg und —z( verschwinden lisst, ist reell und lautet (JACKSON, 1975):

Bampa(z) = > Aw,n.cos<;'” x) : (6.35)

- L
n=135,... 0

Bei der Reihenentwicklung liefern nur die ungeraden n einen Beitrag. Gleiches gilt auch fiir die
y- und die z-Komponente der Teilamplitude E Amg- Die Koeflizienten A, , werden im folgenden
nicht weiter betrachtet. Stattdessen sei fiir eine explizite Bestimmung auf JACKSON (1975)
verwiesen.

In Gleichung (6.35) muss man bei kleinen z-Werten von E_(z,z) sehr viele Summanden in
Betracht ziehen, um eine hinreichend genaue Ndherung zu erhalten. Nach JACKSON ist es aber
fiir Werte z > z)/m ausreichend, nur den ersten Summand zu berticksichtigen. Aus Gleichung
(6.35) ergibt sich dann als Niherung:

U £

Epmg 2 () = Az 1 - cos (5 . x—g) . (6.36)

Mit der y- und der z-Komponente der Teilamplitude E Amgp Wird analog verfahren. Man erhélt

dann die reelle Teilamplitude EAmBi

Bafe)\ [ Aetveos(5-2)
EAmB (z,y,2) = Ey(y) = Ay - cos <% . y—”()) (6.37)
E.(2) A1 cos (% . %)

Die Gesamtamplitude EAm ergibt sich dann nach Gleichung (6.25) durch Multiplikation von
Gleichung (6.34) mit der N&herungslésung (6.37) zu:

\/2cosh (2k"z) — 2cos (2k'z) - A, - cos (L x)

2.’1,‘0
Epp=C- \/2cosh (2k"2) — 2 cos (2k'z) - A1 - cos (ﬁ y)
/2 cosh (2k"y) — 2 cos (2k'y) + 2 cosh (2k"z) — 2 cos (2k'z) - A, 1 - cos (ﬁ

(6.38)
Zur Abschétzung der deponierten Energie an einem beliebigen Punkt im Salzwasserphantom ist
noch das Betragsquadrat der Maximalamplitude FEay,, zu bilden.

Bei der Ableitung der Losung (6.38) wurden mehrere Vereinfachungen und Naherungen verwen-
det, die die allgemeine Giiltigkeit der Losung einschrianken. Der wichtigste Punkt stellt hierbei
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(a) (b)

Abbildung 6.4: Bild (a) zeigt die vier verschiedenen Kabelpositionen im quaderférmigen Salzwas-

serphantom, die in den Modellen 1 bis 4 realisiert wurden. Bild (b) zeigt das komplette numerische

Modell mit den drei Helmholtzspulenpaaren, die zur Feldanregung verwendet wurden. Im oben offenen
Salzwasserphantom ist Kabelposition 2 zu erkennen.

die Vernachlidssigung moglicher Reflexionen an den Phantomrindern dar. Abhingig von der
Leitfahigkeit der Salzlésung ergibt sich im Phantom ein mehr oder weniger komplexes Muster
an Feldminima und -maxima, welches mit Gleichung (6.38) nicht ganz richtig beschrieben wer-
den kann. Gleichung (6.38) wird nur dann zufriedenstellende Losungen ergeben, wenn durch die
Leitfahigkeit der Salzlésung eine ausreichende Dampfung und damit ein Abfall des elektrischen
Feldes im Inneren des Phantoms gegeben ist. Eine dhnliche Uberlegung gilt fiir die Vernachlsissi-
gung der Auswirkungen des induzierten Sekundérfeldes auf das anregende Primé&rfeld. Weiterhin
wurde bei der analytischen Losung in Gleichung (6.37) nur der erste Summand der Reihenent-
wicklung in Betracht gezogen und kein Kabel im Phantom berticksichtigt. In den né&chsten
Abschnitten werden beim Vergleich zwischen numerischer Lésung und dieser Ndherungslosung
die hier angesprochenen Grenzen der Abschitzung deutlich.

6.2.5 Konzeption einer numerischen Studie mit Salzwasserphantomen

Die Ergebnisse verschiedener experimenteller Studien sowie eigener Experimente motivierten
zur Durchfiihrung einer numerischen Studie mit insgesamt 384 einzelnen numerischen Modellen.
Diese groflie Anzahl an Modellen war notwendig, um Schwierigkeiten bei experimentellen Studien
zu iiberwinden, die in der Regel in der Auswahl der Parameter und Modelle stark eingeschrinkt
sind. Dies flihrt dazu, dass die Aussagen verschiedener Studien oft widerspriichlich und nicht
miteinander vergleichbar erscheinen.

In Anlehnung an eigene experimentelle Studien mit Schrittmacherelektroden wurden in die nu-
merischen Modelle ein isoliertes Platin-Iridium-Kabel mit einem Drahtdurchmesser von 4 mm
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und einem Gesamtdurchmesser von 6 mm inklusive PTFE-Isolation (Polytetrafluoroethylen) in-
tegriert. Die Kabel waren an beiden Enden auf einer Lange von 10 mm abisoliert und verfliigten
entweder tiber ein spitzes oder ein flaches Kabelende. Als Material wurde eine Platin-Iridium-
Legierung gewéhlt, die auch bei herkémmlichen Elektrodenkabeln Verwendung findet.

Betrachtet man die Wellenlinge in der Salzldsung, so muss beriicksichtigt werden, dass die
Wellenlédnge der HF-Pulse aufgrund der héheren relativen Permittivitdt im Vergleich zum freien
Raum verkiirzt ist gem#f (KUuCHLING, 1991):

€0

A= ———
Ve

Mit der Lichtgeschwindigkeit cg = 2,9979-103m/s, der Permittivitit der Salzlésung von e, = 78
und den einzelnen Frequenzen der HF-Pulse ergeben sich Wellenldngen in der Salzldsung von
0,782 m bei 42,6 MHz, 0,521 m bei 63,9 MHz und 0,261 m bei 127,8 MHz. Die Kabelldngen
wurden daher je nach Modellkonfiguration mit 0,7 m oder 1,4 m so gew&hlt, dass die Kabelldngen
keine Vielfachen der halben Wellenldnge besafien, um Resonanzen zu vermeiden. Diese Effekte
sollten nicht in dieser numerischen Studie untersucht werden.

(6.39)

Die Kabel wurden an vier verschiedenen Positionen in einem quaderférmigen Plexiglasphantom
mit einer Grundfliche von 0,8 m x 0,8 m und einer H6he von 0,4 m platziert. Abbildung 6.4
zeigt die vier verschiedenen Kabelpositionen im Plexiglasphantom, die im folgenden analog zu
der Nummerierung in der Abbildung mit Modell 1, 2, 3 oder 4 bezeichnet werden.

Weiterhin zeigt die Abbildung das komplette numerische Modell mit der Helmholtzspulenan-
ordnung zur Modellierung der HF-Anregung bei der MR-Tomographie. Dabei wurden drei Spu-
lenpaare verwendet, so dass unterschiedliche magnetische Grundfeldausrichtungen simuliert wer-
den konnten. Bei den Berechnungen wurden zwei Grundmagnetfeldrichtungen berticksichtigt. Im
einen Fall steht das statische Grundfeld senkrecht zur Grundfliche des Phantoms (in z-Richtung
- vgl. Abbildung 6.4) und gibt die Magnetfeldrichtung in einem offenen MR-Tomographen mit
C-formiger Magnetbauform wieder. Im anderen Fall befindet sich das statische Grundfeld senk-
recht zur zz-Ebene (in y-Richtung), was die Verhiltnisse in einem geschlossenen réhrenférmigen
MR-Tomographen wiedergibt. Im folgenden werden die beiden statischen Magnetfeldrichtungen
mit C-Magnet und R-Magnet bezeichnet.

Parameter Wertebereich Anzahl
Kabelpositionen auflen, mittig, rechtwinklig, u-férmig 4
Kabelenden spitz, flach 2
Statisches Magnetfeld C-Magnet, R-Magnet 2
Leitfdhigkeit 0,2S/m, 0,5 S/m, 1,0 S/m, 1,5 S/m 4
Frequenz 42,6 MHz, 63,9 MHz, 127,8 MHz 3
Pulsdauer 0,5 ms, 1,0 ms 2

Tabelle 6.1: Variierte Modellparameter der Kabelphantomstudie. Neben der Kabelposition und Form

der Kabelenden wurde die Richtung des statischen Magnetfelds, die Leitfahigkeit der Salzlosung im

Phantom, die Frequenz der HF-Pulse und die Pulsdauer verandert. Insgesamt ergaben sich so 384
verschiedene Parameterkombinationen.

112



6.2 Salzwasserphantome und Magnetresonanztomographie

Ein weiterer variierter Parameter war die Leitfihigkeit der Salzlésung im Phantom. In Anleh-

nung an die Leitfihigkeit von menschlichem Kérpergewebe wurden Werte von 0,2 S/m, 0,5 S/m,
1,0 S/m und 1,5 S/m gew#hlt (vgl. Tabellen B.2, B.3 und B.4).

Die Frequenz der magnetischen HF-Pulse wurde entsprechend der Larmor-Bedingung (6.1) fiir
statische Grundfeldstérken von 1,0 T, 1,5 T und 3,0 T auf 42,6 MHz, 63,9 MHz und 127,8 MHz
festgelegt. Fiir die Dauer der HF-Pulse wurden 0,5 ms und 1,0 ms fiir einen 180°-Puls gew#hlt.
Dies entspricht gem# der Bedingung (6.2) transversalen Magnetfeldstéirken von 11,7 T und

23,4 uT.

Das gesamte Modell wurde in ein Gitternetz mit variablen Gitterabstinden {iberfiihrt, wobei
an den Kabelspitzen eine Gitterauflésung von bis zu 0,5 mm verwendet wurde. Die Gitterstruk-
tur wurde bei allen Modellen unabhédngig von der tatséchlichen Kabelposition beibehalten, um
die Vergleichbarkeit der Ergebnisse nicht durch unterschiedliche geometrische Gitterstrukturen
bei verschiedenen Kabelpositionierungen einzuschrianken. Durch Kombination aller Parameter
ergaben sich insgesamt 384 numerische Modelle mit jeweils ca. 300 000 Voxeln.

Das numerische Problem wurde zun#chst im Frequenzbereich mit dem Modul W3 des Pro-
grammpaketes MAFIA gelést, um den Energieverlust (SAR) an den Kabelenden im Modell zu
bestimmen. Aus den berechneten elektrischen Feldern wurde die spezifische Absorptionsrate be-
stimmt und mit Hilfe der Schlimmsten-Falls-Abschitzung 4.8 beispielhaft fiir eine Kabelposition
die obere Grenze fiir die zu erwartende Erwidrmung an der Kabelspitze berechnet. Ausgehend
von den abgeschitzten Temperaturwerten wurden fiir einige ausgesuchte Modelle zusétzliche
Berechnungen mit dem thermodynamischen Algorithmus H3 durchgefiithrt. Diese dienten da-
zu, einen besseren Vergleich der berechneten Temperaturwerte mit experimentell bestimmten
Erwdrmungen zu ermoglichen.

Tabelle 6.1 zeigt eine Ubersicht mit allen variierten Modellparametern. Als relative Permit-
tivitdt der Salzldsung wurde nach den Angaben von STOGRYN (1971) fiir jede Frequenz und
Leitfahigkeit ein konstanter Wert von €, = 78 angenommen. Die dielektrischen Parameter fir die
Platin-Iridium-Legierung und die Kabelisolation aus PTFE (Polytetrafluoroethylen) finden sich
in Tabelle B.4. Fiir die thermodynamische Betrachtung wurde von einer konstanten Ausgangs-
temperatur des Phantoms von 293 K ausgegangen. In Tabelle B.1 sind die weiteren notwendigen
Materialparameter aufgefiihrt.

Im né#chsten Abschnitt werden zunéchst die Ergebnisse dieser numerischen Studie vorgestellt.
Anschliessend werden verschiedene Darstellungen der elektrischen Feldverldufe im Inneren des
Phantoms prisentiert und mit den in Abschnitt 6.2.4 abgeleiteten Naherungslésungen verglichen.

6.2.6 Numerische Ergebnisse der Kabelphantomstudie

In den Diagrammen der Abbildungen 6.5, 6.6, 6.7 und 6.8 sind die maximalen SAR-Werte an
den Kabelenden aller numerischen Modelle tiber der Leitfihigkeit der Salzlosung aufgetragen.
In jedem Diagramm sind 24 Einzelwerte gegeneinander aufgetragen, wobei jeweils vier der Ma-
ximalwerte einer Frequenz und Kabelspitzenform zugeordnet wurden.

Die vier Diagramme einer Abbildung reprasentieren eine der vier Kabelpositionen im Phantom
und unterscheiden sich durch die Magnetbauform (R- oder C-Magnet) und die Pulsdauer der HF-
Anregung (0,5 ms oder 1,0 ms). Die entsprechenden SAR-Werte befinden sich in den Tabellen
6.2, 6.3, 6.4 und 6.5.
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Abbildung 6.5: Abhiangigkeit der maximalen spezifischen Absorptionsrate an den Kabelspitzen bei
Modell 1 von der Leitfahigkeit der Salzldsung, der Frequenz, der HF-Pulsdauer, dem Magnettyp und
der Kabelspitzenform.

Die numerischen Ergebnisse lassen einige grundlegende Zusammenhinge erkennen. Vergleicht
man zunichst die Ergebnisse bei unterschiedlicher Grundfeldausrichtung, so zeigt sich bei allen
Kabelpositionen, dass die maximale SAR in der R-Magnetkonfiguration zum Teil um einige
GroBenordungen tiber den Werten der C-Magnetkonfiguration liegt. Besonders deutlich wird dies
bei Modell 1 und 2 (vgl. mit Tabellen 6.2 und 6.3). Im Gegensatz dazu zeigen die Ergebnisse
bei Modell 4 (vgl. mit Tabelle 6.5) nur geringe Unterschiede zwischen R- und C-Magnet.

Bei einem Vergleich der maximalen spezifischen Absorptionsrate an Kabeln mit flachen und
spitzen Enden in der R-Magnetkonfiguration zeigt sich, dass sich bei spitzen Enden in den
meisten Fillen bis auf die Kabelposition in Modell 4 eine doppelt so grofle Absorptionsrate im
Vergleich zu den flachen Enden ergibt. Bei einem Vergleich der numerischen Ergebnisse beziiglich
der Dauer des HF-Pulses erkennt man, dass nach Gleichung (6.2) bei halber Pulsdauer die
doppelte Feldstirke notwendig ist und sich die deponierte Leistung vervierfacht.

Bei der C-Magnetkonfiguration konnte nur ein Zusammenhang zwischen maximaler SAR und
Pulsdauer nachgewiesen werden. Bei spitzen Kabelenden liegt die maximale Absorptionsrate
auch tiber der bei flachen Kabelenden, allerdings unterscheiden sich die Werte nicht um ungeféhr
den Faktor zwei wie bei der R-Magnetkonfiguration.

Die Abhéngigkeit der maximalen Absorptionsrate von der Leitfihigkeit der Salzlésung zeigt in
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Abbildung 6.6: Abhangigkeit der maximalen spezifischen Absorptionsrate an den Kabelspitzen bei
Modell 2 von der Leitfahigkeit der Salzldsung, der Frequenz, der HF-Pulsdauer, dem Magnettyp und
der Kabelspitzenform.

fast allen betrachteten Fillen ein &hnliches Verhalten. Bei zunehmender Leitfahigkeit sinkt die
maximale Absorptionsrate an den Kabelenden. Lediglich bei einer Feldfrequenz von 127,8 MHz
gibt es zwischen 0,2 S/m und 0,5 S/m einen leichten Anstieg der spezifischen Absorptionsrate,
bevor dieser Wert bei zunehmender Leitfihigkeit wieder abnimmt (vgl. Abbildung 6.5, 6.6 und
6.7).

Betrachtet man die Abhéngigkeit der Absorptionsrate von der Feldfrequenz, so erkennt man, dass
bei niedrigeren Frequenzen gréfiere Absorptionsraten an den Kabelenden beobachtet werden.

Zusammenfassend lésst sich sagen, dass die maximale spezifische Absorptionsrate umso gréfler
ist, je geringer die Leitfahigkeit der Salzlosung, je kleiner die Feldfrequenz und je kiirzer die Puls-
dauer ist. Dariiber hinaus ergeben sich bei der R-Magnetkonfiguration und spitzem Kabelende
héhere Absorptionsraten als in allen anderen betrachteten Konfigurationen. Die maximale SAR
wurde daher bei Modell 1 bei einer Leitfahigkeit von 0,2 S/m, einer Pulsdauer von 0,5 ms und
einer Feldfrequenz von 42,6 MHz am spitzen Kabelende in R-Magnetkonfiguration beobachtet
(vgl. Tabelle 6.2).

Die Abbildungen 6.9 und 6.10 zeigen die spezifische Absorptionsrate in einem Schnitt durch die
Mitte von Modell 1 in der zy-Ebene bei flachem Kabelende und einer HF-Pulsdauer von 1,0 ms
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Abbildung 6.7: Abhangigkeit der maximalen spezifischen Absorptionsrate an den Kabelspitzen bei
Modell 3 von der Leitfahigkeit der Salzldsung, der Frequenz, der HF-Pulsdauer, dem Magnettyp und
der Kabelspitzenform.

in Abhéngigkeit von der Feldfrequenz und der Leitfihigkeit der Salzlésung. Beide Abbildungen
unterscheiden sich nur durch die Richtung des magnetischen Grundfelds (R- oder C-Magnet).

In Abbildung 6.9 zeigt sich bei R-Magnetkonfiguration, dass bei allen Feldfrequenzen bei Zunah-
me der Leitfdhigkeit der Salzlésung die spezifische Absorptionsrate im Inneren des Phantoms um
mehrere Groflenordnungen abféllt. Zur Verdeutlichung dieses Sachverhaltes wurde die Farbskala
logarithmisch gew&hlt, um so eine gréflere Dynamik bei der Farbgebung zu erhalten. Bei einer
Leitfahigkeit von 0,2 S/m sind je nach Feldfrequenz komplexere Amplitudenmuster zu erkennen
und nicht nur ein reiner exponentieller Abfall.

Ahnliche Zusammenhinge zeigt Abbildung 6.10, welches die spezifische Absorptionsrate bei
der C-Magnetkonfiguration wiedergibt. Uberraschend ist hier zuniichst, dass die maximale Ab-
sorptionsrate nicht immer an den Kabelenden beobachtet werden kann, wie das bei der R-
Magnetkonfiguration in Abbildung 6.9 der Fall ist. Es zeigt sich dariiber hinaus eine leichte
Drehung der SAR-Verteilung um die z-Achse, was auf eine Phasenverschiebung des resultieren-
den elektrischen Feldes durch die induzierten Wirbelstréme zuriickzufiihren ist. Auch hier wurde
die logarithmische Farbskala verwendet mit identischer Achsenskalierung beider Abbildungen,
um einen direkten Vergleich der Ergebnisse zu ermdglichen.

Abbildung 6.11 vergleicht die maximale SAR zwischen flachen und spitzen Kabelenden in
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Abbildung 6.8: Abhangigkeit der maximalen spezifischen Absorptionsrate an den Kabelspitzen bei
Modell 4 von der Leitfahigkeit der Salzldsung, der Frequenz, der HF-Pulsdauer, dem Magnettyp und
der Kabelspitzenform.

Abhéngigkeit der Leitfihigkeit der Salzlosung bei Modell 2 (R-Magnet, 63,9 MHz, 0,5 ms Puls-
dauer). Wie bereits in Abbildung 6.6 zu sehen ist, nimmt bei beiden Kabelendenformen die SAR
bei zunehmender Leitfdhigkeit der Salzlosung ab. Eine Differenzbildung der jeweiligen SAR-
Verteilungen wie in den rechten beiden Spalten von Abbildung 6.11 verdeutlicht die Tatsache,
dass an spitzen Kabelenden héhere SAR-Werte erreicht werden..

Abbildung 6.12 zeigt diesen Effekt in einer dreidimensionalen Darstellung der Stromdichtevertei-
lung am spitzen und flachen Kabelende. Die Gréfie der Pfeile ist beim flachen Kabelende {iberall
nahezu konstant und zeigt eine relativ gleichméflige Verteilung der Stromdichte. Am spitzen
Kabelende sind die Pfeile an der Spitze grofler als am flachen Kabelende. Dadurch werden die
héheren berechneten SAR-Werte an spitzen Kabelenden noch einmal verdeutlicht.

In Abschnitt 6.2.4 wurde mit Gleichung (6.38) eine Méglichkeit abgeleitet, die Amplitude des
elektrischen Feldes in einem quaderférmigen Salzwasserphantom n&herungsweise zu berechnen.
Anhand der Ergebnisse der numerischen Untersuchungen kann die N&herungslésung auf ihre
Giiltigkeit hin untersucht werden.

Im Falle der numerischen Modelle entspricht die C-Magnetkonfiguration in der Ausrichtung
des statischen Magnetfelds der fiir die theoretische Abschitzung verwendeten Konfiguration
nach Abbildung 6.3. Als Vergleichsergebnisse werden zunfchst die numerischen Resultate von
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Kabelende spitz Kabelende flach
Typ b o 42,6 MHz 63,9 MHz 127,8 MHz | 42,6 MHz 63,9 MHz 127,8 MHz
ms S/m
0,2 147959 91 363 3978 73767 44170 1846
1.0 0,5 29 329 22 356 3850 16614 11882 2023
1,0 6276 3930 1700 3644 2336 993
R 1,5 2223 1338 857 1348 778 459
0,2 584158 365454 15914 295071 176680 7385
05 0,5 117319 89 427 15403 66 457 47528 8094
1,0 25106 15723 6803 14579 9347 3975
1,5 8892 5352 3431 5395 3112 1838
0,2 223 183 43 198 151 32
10 0,5 80 78 42 85 77 44
1,0 30 26 25 33 30 27
c 1,5 15 14 16 17 15 19
0,2 894 730 172 794 604 129
05 0,5 321 313 169 338 309 176
1,0 123 98 101 134 118 110
1,5 62 57 65 67 59 76

Tabelle 6.2: Maximale berechnete SAR-Werte in W/kg an den Kabelenden in Modell 1 in Abhangig-
keit vom verwendeten MRT-Magnettyp, der Pulsdauer, der Leitfdhigkeit der Salzldsung, der Kabel-
endenform und der Frequenz des HF-Feldes.

Modell 4 verwendet, bei dem das Kabel genau in der Phantommitte parallel zur y-Achse verlauft
und damit einer Simulation eines Phantoms ohne Kabel am nichsten kommt.

In Abbildung 6.13 sind in sechs Diagrammen die Feldverldufe einzelner Betragskomponenten
der elektrischen Feldamplitude im Inneren des Phantoms entlang der - und der z-Achse durch
den Mittelpunkt des Phantoms® bei unterschiedlicher Frequenz und Leitfahigkeit der Salzldsung
aufgetragen. Wie von Gleichung (6.38) gefordert, ergibt sich die Feldamplitude im Koordina-
tenursprung (0,0,0) in jedem Fall zu Null.

Es ist moéglich, die berechneten Komponenten der Feldamplitude mit der Losung aus Gleichung
(6.38) zu vergleichen. Dazu miissen nur die Parameter &' und &” mit Hilfe von Gleichung (6.13)
und (6.14) berechnet werden. Die Konstante C, sowie die Koeffizienten A, .1 kénnen dann
mit Hilfe eines Regressionsverfahrens bestimmt werden, da fiir sie keine expliziten Gleichungen
abgeleitet wurden. Die Werte fiir die Konstanten k' und k" sind in Tabelle 6.6 aufgefiihrt.

In Abbildung 6.13 wurde die N&herungslosung nach Gleichung (6.38) den Ergebnissen der nu-
merischen Berechnung als durchgezogene Linien iiberlagert. Dabei wurde die Feldstirke immer
entlang der Koordinatenachsen durch den Ursprung dargestellt. Die Kosinusterme in Gleichung
(6.38) ergeben sich dadurch zu eins. Die Ndherungslésung liefert ab einer Salzwasserleitfihigkeit

!Der Phantommittelpunkt liegt hier genau im Koordinatenursprung
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Kabelende spitz Kabelende flach
Typ b o 42,6 MHz 63,9 MHz 127,8 MHz | 42,6 MHz 63,9 MHz 127,8 MHz
ms S/m
0,2 145336 86 754 3578 69 402 39001 1592
1.0 0,5 28 844 21290 3513 15273 10699 1654
1,0 5891 3768 1608 3342 2065 838
R 1,5 2181 1288 810 1210 682 404
0,2 582543 347018 14314 277609 156004 6369
05 0,5 115376 85162 14055 61094 42799 6618
1,0 235647 15074 6433 13371 8261 3351
1,5 8725 5153 3242 4840 2731 1619
0,2 185 136 44 193 186 28
10 0,5 85 64 36 75 66 26
1,0 33 32 26 30 30 23
c 1,5 16 16 17 15 14 11
0,2 742 544 177 773 747 115
05 0,5 341 259 144 300 267 107
1,0 132 131 106 121 122 92
1,5 64 64 71 60 56 44

Tabelle 6.3: Maximale berechnete SAR-Werte in W/kg an den Kabelenden in Modell 2 in Abhangig-
keit vom verwendeten MRT-Magnettyp, der Pulsdauer, der Leitfahigkeit der Salzldsung, der Kabel-
endenform und der Frequenz des HF-Feldes.

von 0,5 S/m eine sehr gute Ubereinstimmung mit den numerisch ermittelten Amplitudenwer-
ten. Bei einer Leitfdhigkeit von 0,2 S/m zeigen sich teilweise deutliche Abweichungen zwischen
der N&herungslosung und den berechneten Werten, da durch die geringe Dampfung, wie in Ab-
schnitt 6.2.4 beschrieben, die Reflexionen an den Phantomradndern nicht mehr vernachléssigt
werden diirfen.

Abbildung 6.14 bestitigt die erarbeitete Ndherungslosung (6.38) aus Abschnitt 6.2.4.2 an den
Ergebnissen von Modell 4 bei 42,6 MHz, 1,0 S/m und einer Pulsdauer von 1,0 ms. Im Gegen-
satz zu Abbildung 6.13 wurden hier Rechenergebnisse der R-Magnetkonfiguration dargestellt.
Dadurch @ndern sich die Koordinatenabhingigkeiten in Gleichung (6.24) etwas. Die in der Ab-
bildung dargestellte z-Komponente des elektrischen Feldes ist in diesem Fall neben der - auch
von der y-Koordinate statt von z abhingig. Gleichung (6.38) gilt analog.

In der Abbildung wird deutlich, dass sich der Feldverlauf in der N&he des Phantomrandes allein
durch Berticksichtigung des ersten Summanden der Reihenentwicklung (6.35) sehr gut darstellen
l4sst. In der Phantommitte gilt diese Ndherung nicht mehr. Dann miissen eine grofiere Anzahl
an Konsinustermen beriicksichtigt werden.

Die Verdnderung der Amplitude der z-Komponente des elektrischen Feldes in Abhéngigkeit
der Leitfahigkeit der Salzlésung ist in Abbildung 6.15 dargestellt (Modell 4, 63,9 MHz, Schnitt
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Kabelende spitz Kabelende flach
Typ b o 42,6 MHz 63,9 MHz 127,8 MHz | 42,6 MHz 63,9 MHz 127,8 MHz
ms S/m
0,2 27872 22526 2451 15254 13142 1654
1.0 0,5 89675 8246 2356 5552 5239 1986
1,0 2549 1876 1103 1748 1344 907
R 1,5 1062 682 497 740 492 391
0,2 111490 90 107 9806 61017 52570 6616
05 0,5 35868 32984 9425 22208 20959 7945
1,0 10198 7506 4413 6993 5376 3631
1,5 4249 2731 1989 2960 1971 1567
0,2 508 778 397 398 675 272
10 0,5 326 470 553 282 389 463
1,0 172 274 418 158 244 359
c 1,5 111 144 193 103 135 170
0,2 2032 3113 2150 1436 2397 1588
05 0,5 1304 1558 2214 1129 1883 1854
1,0 691 1096 1672 635 979 1436
1,5 447 578 772 412 540 681

Tabelle 6.4: Maximale berechnete SAR-Werte in W/kg an den Kabelenden in Modell 3 in Abhangig-
keit vom verwendeten MRT-Magnettyp, der Pulsdauer, der Leitfdhigkeit der Salzldsung, der Kabel-
endenform und der Frequenz des HF-Feldes.

in der zy-Ebene durch die Phantommitte) und ergénzt dadurch die Darstellung in Abbildung
6.13. Durch die zunehmende Dampfung bei Zunahme der Leitfdhigkeit stellt sich mehr und
mehr ein exponentieller Verlauf der Feldamplitude im Inneren des Phantoms ein, da dann der
Dampfungsanteil in Form der hyperbolischen Kosinusfunktionen in Gleichung (6.38) im Vergleich
zu den Kosinusanteilen tiberwiegt.

Da in den experimentellen Studien in erster Linie die Erwdrmung an der Kabel- oder Elektro-
denspitze gemessen wird, erscheint es sinnvoll fir einige SAR-Werte die moégliche Erwdrmung
abzuschitzen. Mit Hilfe der einfachen Abschitzung nach Gleichung (4.8) lisst sich so eine obere
Grengze fiir die zu erwartende Erwirmung angeben.

Da bei Modell 1 in der R-Magnetkonfiguration die gréfiten SAR-Werte ermittelt werden konn-
ten, wurden diese Werte fiir die Temperaturabschitzung verwendet. Bei der Berechnung der
Erwdrmung sind die SAR-Werte aber noch an das Puls-Pausenverhéltnis einer fiktiven MR-
Sequenz anzupassen, da bei der MR-Tomographie das Hochfrequenzfeld gepulst eingestrahlt
wird und sich an einen HF-Puls stets eine gewisse Pausenzeit anschliefit. Addiert man die Dauer
aller Hochfrequenzpulse und setzt diese zur Gesamtdauer der MR-Sequenz ins Verhéltnis, so
ergibt sich das Puls-Pausenverhéltnis, mit dem die SAR-Werte modifiziert werden miissen.

Betrachtet man eine MR-Sequenz so ist die Repetitionszeit und die in dieser Zeitspanne enthal-
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Kabelende spitz Kabelende flach
Typ b o 42,6 MHz 63,9 MHz 127,8 MHz | 42,6 MHz 63,9 MHz 127,8 MHz
ms S/m
0,2 422 380 156 344 275 103
1.0 0,5 200 204 93 183 188 87
1,0 78 68 46 74 63 42
R 1,5 31 22 28 28 19 27
0,2 1691 1422 624 1144 875 422
05 0,5 833 783 365 800 760 323
1,0 296 253 171 27 248 166
1,5 128 114 109 81 79 88
0,2 249 203 126 202 134 69.84
10 0,5 75 70 59 73 68 43.74
1,0 28 30 20 26 23 17.73
c 1,5 14 13 15 13 12 11.33
0,2 998 812 479 809 526 284
05 0,5 308 292 244 301 281 157
1,0 115 123 81 107 93 70
1,5 56 53 62 52 48 45

Tabelle 6.5: Maximale berechnete SAR-Werte in W/kg an den Kabelenden in Modell 4 in Abhangig-
keit vom verwendeten MRT-Magnettyp, der Pulsdauer, der Leitfahigkeit der Salzldsung, der Kabel-
endenform und der Frequenz des HF-Feldes.

tenen HF-Pulse von Interesse, da sie den HF-Anteil einer Sequenz ausmachen (MORNEBURG,
1995). Im folgenden wird eine fiktive MR-Sequenz angenommen, die {iber einen HF-Anteil von
1,0 % verfiigt und damit einen verniinftigen Vergleichswert fiir eine hohe HF-Belastung darstellt.
Ausgehend von diesem HF-Anteil wurden die SAR-Werte angepasst und die Erwirmung an der
Elektrodenspitze abgeschitzt. Die Ergebnisse dieser Berechnung finden sich in Tabelle 6.7.

Wie aus Tabelle 6.7 zu sehen ist, steigen die Temperaturen linear mit der Zeit an und damit tiber
alle Grenzen, was bei langen MR-Sequenzdauern zu unverhéltnismiflig groflen Erwirmungen
fiihrt. Betrachtet man den Fall des spitzen Kabelendes bei einem HF-Anteil von 1,0 % und einer
Leitfahigkeit von 0,2 S/m bei einer Frequenz von 42,6 MHz, so ergibt sich aus der SAR eine
obere Grenze fiir die Erwérmung von 1,397 K/s.

Bei einer fiktiven MR-Sequenz mit einer Dauer von 2500 s wiirde sich damit eine maximale
Erwdmrmung von 3492,5 K ergeben, was so nicht méglich ist. Eine Berechnung der Erwarmung
mit Hilfe der einfachen Abschétzung nach Gleichung (4.8) liefert hier eine sichere obere Grenze,
die jedoch keinen brauchbaren Hinweis auf die tatsichlich auftretende Erwarmung liefert.

Aus diesem Grund wurde mit Hilfe des thermodynamischen Algorithmus fiir drei Fille die
Erwdrmung am Kabel mit spitzen Enden von Modell 1 wihrend einer MR-Sequenz mit einem
HF-Anteil von 1,0 % berechnet. Neben der oben angegebenen Frequenz von 42,6 MHz wur-
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Abbildung 6.9: Spezifische Absorptionsrate in Modell 1 in der SalzIdsung und an den Kabelenden
in Abhangigkeit von der Leitfahigkeit der Salzlésung und der Frequenz bei flachem Kabelende und
1 ms Pulsdauer im R-Magneten (Schnitt in der xy-Ebene, logarithmische Farbskala).

den auch fiir die SAR-Werte von 63,9 MHz und 127,8 MHz die Erwdrmungen berechnet. Die
Simulation wurde fiir einen Zeitraum von 2500 s durchgefiihrt.

In Abbildung 6.16 sind die Temperaturverldufe an der Kabelspitze wiedergegeben. Wie aus den
SAR-Werten zu erwarten war, wird bei einer Frequenz von 42,6 MHz die maximale Tempera-
turzunahme beobachtet. Die Temperatur steigt hier vom Ausgangswert 293,0 K auf 333,3 K an,
was einer Erwirmung von 40,3 K entspricht. Bei 63,9 MHz wird eine Erwdrmung von 28,9 K
erzielt und bei 127,8 MHz lediglich von 3,6 K.

Die einfache Abschitzung tiberschitzt in allen drei Fiéllen mit Temperaturzunahmen von
3493 K, 2185 K und 95 K die Werte des thermodynamischen Algorithmus um mehrere Gréflen-
ordnungen. Die Wiarmeleitung in der Salzlésung sorgt fir einen raschen Wirmeabtransport vom
Kabelende in die umgebende Fliissigkeit und damit fiir deutlich niedrigere Endtemperaturen.

Abbildung 6.17 zeigt die Endtemperaturverteilung in einem Schnittbild durch die Mitte von Mo-
dell 1 nach 2500 s Dauer der fiktiven MR-Sequenz fiir alle drei berticksichtigten Frequenzen bei
einer HF-Pulsdauer von 0,5 ms und einer Leitfihigkeit von 0,2 S/m. Bei 42,6 MHz ist deutlich
zu sehen, wie sich um die Kabelspitze eine keulenférmige Erwidrmungszone bildet. Dies kann
auch bei 63,9 MHz beobachtet werden. Bei 127,8 MHz liegen die Maxima der Feldamplitude
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Abbildung 6.10: Spezifische Absorptionsrate in Modell 1 in der Salzldsung und an den Kabelenden
in Abhangigkeit von der Leitfahigkeit der Salzldsung und der Frequenz bei flachem Kabelende und
1 ms Pulsdauer im C-Magneten (Schnitt in der xy-Ebene, logarithmische Farbskala).

aufgrund der Reflexionen am Rand des Phantoms nicht an den Kabelenden. In diesem Fall liegt
der Punkt maximaler Erwédrmung nicht an der Kabelspitze, wie bei den anderen Feldfrequenzen.

Einige Ergebnisse der Kabelphantomstudie wurden bereits verdffentlicht (GOLOMBECK &
DOsSEL, 2003).
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SAR Absolutwerte Vergleich SAR-Werte
spitzes Kabel rundes Kabel Differenzbild Wirkung Spitze
0,2S/m l
o m
- !
1,5S5/m

logarithmische Farbskala lineare Farbskala
B |
< 0,01 W/kg logarithmische Skala 350000 W /kg
-350000 W/kg lineare Skala - Differenzbild 350000 W /kg
< 0 W/kg lineare Skala - Wirkung Spitze 350000 W/kg

Abbildung 6.11: Vergleich der spezifischen Absorptionsrate zwischen spitzem und flachem Kabelen-
de bei Modell 2 und unterschiedlichen Leitfahigkeiten der Salzlésung (R-Magnet, 63,9 MHz, 0,5 ms
Pulsdauer). Die Bilder der beiden linken Spalten zeigen die Absolutwerte der Absorptionsrate an den
Kabelenden mit logarithmischer Farbskala. Die Spalten der rechten Seite zeigen die Ergebnisse einer
Differenzbildung zwischen der Absorptionsrate bei spitzem Kabelende und der Absorptionsrate bei fla-
chem Kabelende mit linearer Farbskala. Bei der duBersten rechten Spalte wurde die lineare Farbskala
auf positive Differenzwerte normiert, um die Wirkung des spitzen Kabelendes zu verdeutlichen.
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(a)

Abbildung 6.12: Vergleich der Stromdichteverteilung am spitzen und flachen Kabelende. Bei spitzem
Kabelende kommt es zu einer Erhohung der Stromdichtewerte an der Kabelspitze, die beim flachen
Kabelende nicht beobachtet werden kann.

Leitfahigkeit | 42,6 MHz 63,9 MHz 127,8 MHz
0,2 S/m 8,74-1/s  12,48-1/s  24,00-1/s
o 0,5 S/m 10,96-1/s 14,61-1/s  25,59-1/s
1,0 S/m 14,18-1/s  18,18-1/s  29,22-1/s
1,5 S/m 16,84-1/s  21,29-1/s  32,91-1/s
0,2S/m 3,83:1/s 4,03-1/s 4,19-1/s
v 0,5S/m 7,63-1/s 8,60-1/s 9,83:1/s
1,0 S/m 11,80-1/s 13,82-1/s  17,20-1/s
1,5 S/m 14,90-1/s  17,71-1/s  22,91-1/s

Tabelle 6.6: Werte fiir die Konstanten k' und k” fiir die N3herungslosung nach Gleichung (6.38)

zur Berechnung der elektrischen Feldamplitude in einem quaderférmigen Salzwasserphantom in

Abhangigkeit der Leitfahigkeit der Salzlésung und der Feldfrequenz. Die relative Permittivitat der
Salzlésung wurde mit £, = 78 als konstant angenommen.
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Abbildung 6.13: Absolutbetrag bzw. Amplitude der x- und z-Komponente des elektrischen Feldes
im Salzwasserphantom (Punkte) und Vergleich mit der Naherungslésung (durchgezogene Linien) bei
Modell 4 (C-Magnet). Die Diagramme in Spalte (a) zeigen den Verlauf der z-Komponente entlang
der x-Achse bei unterschiedlichen Frequenzen und Leitfdhigkeiten der Salzlésung. Der Verlauf der
x-Komponente entlang der z-Achse wird in den Diagrammen von Spalte (b) wiedergegeben. Bei nied-
riger Leitfahigkeit der Salzlésung nimmt die Dampfung im Phantom ab und es ergeben sich aufgrund
von Reflexionen Abweichungen zwischen der Naherungslosung und den berechneten Feldverlaufen.
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0,10 m
Abbildung 6.14: Absolutbetrag der x-Kompo- g 250 920m
nente des elektrischen Feldes bei Modell 1 (R- ;ZOO P M " 4
Magnet) entlang der x-Achse in unterschiedlichen £ ﬁ:’ %

: ~-150 &
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Abbildung 6.15: Amplitudenbetrag der z-Komponente des elektrischen Feldes in Modell 4 bei

63,9 MHz im C-Magneten in Abhangigkeit der Leitfahigkeit der Salzldsung (Schnitt durch die xz-

Ebene). Die Bilder zeigen, dass bei zunehmender Leitfahigkeit die Reflexionen am Rand des Phantoms

abnehmen und sich durch die zunehmende Dampfung ein exponentieller Verlauf der Amplitude im
Inneren des Phantoms einstellt.

Kabelende spitz Kabelende flach
Anteil b o 42,6 MHz 63,9 MHz 127,8 MHz | 42,6 MHz 63,9 MHz 127,8 MHz
ms S/m
0,2 0,354 0,218 0,010 0,176 0,106 0,004
1.0 0,5 0,070 0,053 0,009 0,040 0,028 0,005
1,0 0,015 0,009 0,004 0,009 0,006 0,002
1.0 % 1,5 0,005 0,003 0,002 0,003 0,002 0,001
0,2 1,397 0,874 0,038 0,706 0,422 0,018
0.5 0,5 0,281 0,214 0,037 0,159 0,114 0,019
1,0 0,060 0,038 0,016 0,035 0,022 0,010
1,5 0,021 0,013 0,008 0,013 0,007 0,004

Tabelle 6.7: Einfache Abschatzung der Erwdrmung in K/s an der Kabelspitze von Modell 1 (R-
Magnet) gemaB Gleichung (4.8). Ausgehend vom Puls-Pausenverhaltnis einer MR-Sequenz ist der
in Tabelle 6.2 angegebene Spitzen-SAR-Wert anzupassen und auf einen gemittelten SAR-Wert um-
zurechnen. Bei den hier angegebenen Werten wird von einem Hochfrequenzanteil von 1,0 % an der
Gesamtaufnahmedauer ausgegangen, was einer hochfrequenzintensiven MR-Sequenz entspricht.
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Abbildung 6.16: Erwarmung der Kabelspitze von Z: 42,6 MHz

Modell 1 bei 0,2S/m und spitzem Kabelende 005

wahrend einer MR-Sequenz von 2500 s Dauer < 63,9 MHz

mit einem HF-Anteil von 1,0 % und einer Puls- 5 o —

dauer von 0,5 ms bei 42,6 MHz (rote Kurve), B

63,9 Mhz (griine Kurve) und 127,8 MHz (blaue E a5

Kurve). Die Endwerte der Temperatur an der Ka- F 00 [ 127,8 Miz
belspitze liegen am Simulationsende um einige 295

GroBenordnungen unter denen der Schlimmsten- 290 © o o - " o

Falls-Abschatzung aus Tabelle 6.7.

Zeit in s

(c)

|
293 K lineare Skala 333 K

Abbildung 6.17: Temperaturverteilung an der Kabelspitze von Modell 1 nach einer simulierten MR-
Sequenz von 2500 s Dauer, bei einer Leitfahigkeit von 0,2 S/m, einer Pulsdauer von 0,5 ms und
einem HF-Anteil von 1,0 % bei verschiedenen Frequenzen. Bild (a) zeigt die Temperaturverteilung
bei einer Feldfrequenz von 42,6 MHz, bei der die maximale Erwarmung von 293,0 K auf 333,3 K
beobachtet wurde. Bild (b) gibt die Temperaturverteilung bei 63,9 MHz wieder, bei der sich eine
Maximaltemperatur von 321,9 K ergab. Bei 127,8 MHz in Bild (c) wurden an der Kabelspitze lediglich
296,6 K erreicht. Aufgrund der elektrischen Feldverteilung befindet sich bei dieser Frequenz die
warmste Stelle weiter im Inneren des Phantoms und nicht an der Kabelspitze (vgl. Abbildung 6.9).
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Abbildung 6.18: Vergleich der berechneten Tem- 9 9
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LUECHINGER).

6.2.7 Numerische Modelle im Vergleich mit anderen experimentellen Studien
6.2.7.1 Erwirmung eines Kupferkabels in einem Salzwasserphantom

Im Rahmen einer Kooperation mit dem Institut fiir Biomedizinsche Technik der Eidgengssisch
Technischen Hochschule (ETH) in Ziirich, Schweiz, wurden numerische Untersuchungen durch-
gefiihrt, um vorhandene experimentelle Ergebnisse der Erwirmung eines Kabels in einem salz-
wassergefiillten Plexiglasphantom zu tberpriifen (LUECHINGER, 2002).

Im Experiment wurde ein isoliertes Kupferkabel mit einer L&nge von 0,56 m und einer Dicke
von 0,6 mm in einem quaderférmigen Plexiglasphantom (0,334 m x 0,634 m x 0,094 m) plat-
ziert, welches mit isotonischer Kochsalzlosung (0,9 % NaCl) gefiillt wurde. Das Kabel wurde
zunichst so ausgerichtet, dass es genau im Zentrum des Plexiglasphantoms entlang der langen
z-Koordinatenachse zu liegen kam.

Am Kabelende wurde eine Messfaser eines faseroptischen Temperaturmessgerites angebracht,
um wihrend der MR-Sequenz die Erwirmung an der Kabelspitze erfassen zu kénnen?. Das
Plexiglasphantom wurde in einem 1,5 T-MR-Tomographen (R-Magnet, 63,9 MHz) platziert.
Dabei wurde die lange Phantomachse parallel zur magnetischen Grundfeldrichtung des MR-
Tomographen ausgerichtet. Das Kabel im Inneren des Phantoms wurde durch Haltevorrichtun-
gen so fixiert, dass es sich genau im geometrischen Zentrum des MR-Tomographen parallel zum
statischen Grundfeld befand.

Die Erwdrmung am Kabel wurde wihrend einer Turbo Spin Echo Sequenz mit einer maximalen
Starke des HF-Feldes von By = 27 pT kontinuierlich aufgezeichnet. In weiteren Experimenten
wurde das Kabel sukzessive in einer Richtung an den Rand des Phantoms verschoben und
die Temperaturmessung wiederholt. Wie in den eigenen experimtentellen Studien beobachtet,
stieg auch hier im salzwassergefiillten Phantom die Temperatur an der Kabelspitze innerhalb
kurzer Zeit auf einen konstanten Maximalwert an und zeigte am Ende der MR-Sequenz einen
exponentiellen Abfall auf den Ausgangswert. Abbildung 6.18 zeigt die maximal beobachteten
Erwdrmungen einer Messreihe als Messpunkte mit Fehlerbalken.

2Die Vorteile dieses Verfahrens liegen zum einen in der hohen zeitlichen Auflssung der Temperaturmessung
(bis zu einigen Hertz) und der Tatsache, dass fiir die Temperaturmessung keine metallischen Materialien in oder
an den MR-Tomographen gebracht werden miissen, die bei der Bildgebung Artefakte erzeugen.
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Der numerische Aufbau wurde einem Experiment von LUECHINGER nachempfunden. Ein in den
Abmessungen tibereinstimmendes quaderférmiges Plexiglasphantom mit inliegendem Kupferka-
bel wurde dazu in einem Helmholtzspulensystem modelliert. Der numerische Aufbau ergab sich
dhnlich zur Kabelphantomstudie in Abbildung 6.3.

Um die Kabelgeometrie modellieren zu kénnen, war es notwendig ein Gitternetz mit unterschied-
lichen Schrittweiten und ca. 800 000 Voxeln zu erstellen. Die Kabelspitze wurde hierbei mit einer
Auflésung von bis zu 0,1 mm x 0,1 mm x 0,1 mm als flaches Kabelende nachgebildet, welches
auf einer Lénge von 1 mm ,,abisoliert“ wurde.

Die Stromstéirke im Helmholtzspulensystem wurde so gewihlt, dass eine HF-Feldstéirke (Am-
plitude) von By = 27 pT im Inneren des Spulensystems erzeugt wurde. Das elektrodynamische
Problem wurde daraufhin mit dem PSBCGR-Algorithmus im Frequenzbereich (vgl. Abschnitt
2.3) mit dem Programmpaket MAFTA gelést und aus der berechneten elektrischen Feldvertei-
lung mit Gleichung (4.7) die Leistungsabsorption (SAR) im Phantom und an der Kabelspitze
bestimmt. Mit Hilfe von Gleichung (4.8) wurde aus den ermittelten SAR-Werten eine obere
Grenze fiir die maximal zu erwartende Erwdrmung abgeschétzt.

Im numerischen Modell wurde das Kabel ebenfalls vom geometrischen Zentrum des Phantoms
nach auflen verschoben. Dabei wurden fiinf Positionen ausgehend vom geometrischen Zentrum
beriicksichtigt (z = 0 ¢cm, 2,5 cm, 5 ¢cm, 10 em und 15 ¢m). Es ergaben sich Temperaturzunah-
men von 0,05 K/s im Zentrum (z = 0 cm) bis zu 8,56 K/s nahe der Seitenwand des Phantoms
(z = 15 cm).

In Abbildung 6.18 sind neben einer experimentellen Messreihe auch die Ergebnisse der numeri-
schen Untersuchung aufgetragen. Da zum Zeitpunkt dieser Studie noch kein thermodynami-
scher Algorithmus zur Verfiigung stand, konnte kein direkter Vergleich zwischen den Ergebnis-
sen durchgefiihrt werden, da die sich tatsfchlich einstellende Temperatur mit Hilfe der einfa-
chen Abschitzung nach Gleichung (4.8) nicht berechnet werden konnte. Die Abbildung zeigt
aber gleichwohl, dass die Kurven aufeinander skalieren und auch die numerische Simulation die
Abhingigkeit der Erwarmung von der Kabelposition im Phantom richtig beschreibt.

Eine quadratische Abhéngigkeit der Erwirmung von der Kabelverschiebung vom Ursprung,
wie von LUECHINGER (2002) vermutet, konnte hier aber nicht nachgewiesen werden, da das
elektrische Feld im Inneren des Phantoms nicht linear abfillt (vgl. Abbildung 6.13).

Die numerische Studie wurde in Teilen wiederholt, um den Einfluss einer Temperaturmessfa-
ser auf die elektrische Feldverteilung am Kabelende zu untersuchen. Dabei zeigte sich, dass
bei vorhandener Messfaser die elektrische Feldstirke an der Kabelspitze um bis zu 12 % im
Vergleich zur Modellrechnung ohne Messfaser anstieg. Ubertriigt man das auf die spezifische
Absorptionsrate nach Gleichung (4.7) so ergibt sich eine hthere SAR von ca. 25 %. Die Ergeb-
nisse deuten darauf hin, dass bei der Verwendung von faseroptischen Temperaturmesssystemen
héhere Erwdrmungen gemessen werden kdnnten, als tatséchlich vorkommen.

Die Ergebnisse dieser Studie wurden bereits verdffentlicht (GOLOMBECK ET AL., 2000¢).
6.2.7.2 Erwirmung einer Hirnelektrode in einem Salzwasserphantom
In Kooperation mit der Universitiat Heidelberg, Klinik fiir Neurochirurgie (Kopfklinik), wurden

im Jahr 1999 Studien mit einem kugelférmigen Salzwasserphantom durchgefiihrt, um die Ergeb-
nisse der Arbeitsgruppe TRONNIER ET AL. (1999B) der Kopfklinik numerisch zu iiberpriifen.
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Abbildung 6.19: Numerisches Modell eines ku-
gelférmigen Salzwasserphantoms (links) mit hoch-
aufgeldster Tiefenhirnstimulationselektrode beste-
hend aus vier Platin-lridium-Ringen (rechts), die
sich genau im Zentrum des Phantoms befindet.

In den experimentellen Untersuchungen wurde in der Mitte eines kugelférmigen Salzwasserphan-
toms eine Hirnschrittmacherelektrode platziert und mit Hilfe einer Infrarot-Wiarmebildkamera
die Erwdrmung in drei verschiedenen MR-Tomographen gemessen. Bei keiner der durchgefiihrten
Untersuchungen konnte eine messbare Erwirmung festgestellt werden.

Im Rahmen einer numerischen Studie wurde dieses ,, Kopfmodell“ mit Elektrode in ein Helm-
holtzspulensystem eingebracht, um die HF-Anregung eines MR-Tomographen zu simulieren. Ab-
bildung 6.19 zeigt ein Schnittbild durch das kugelférmige Kopfphantom und eine VergroBerung
des numerischen Modells der Hirnelektrode.

Die modellierte Plexiglashohlkugel mit einem Durchmesser von 0,2 m wurde in ein dreidimen-
sionales Gitter mit ca. 750000 Voxeln {iberfiihrt. Die Gitterschrittweite wurde im Zentrum des
Phantoms auf bis zu 0,1 mm x 0,1 mm X 0,5 mm reduziert, um die Hirnelektrode, bestehend
aus vier voneinander durch Isolatorstiicke getrennte Platin-Iridum-Ringe, ausreichend genau
modellieren zu kénnen.

In Anlehnung an die experimentellen Arbeiten von TRONNIER ET AL. wurden MR-Frequenzen
von 8,3 MHz und 63,9 MHz berechnet, was den magnetischen Grundfeldstirken von 0,2 T und
1,5 T der verwendeten MR-Tomographen entspricht. Die Stérke des magnetischen Hochfrequenz-
felds wurde nach Gleichung (6.2) entsprechend einer HF-Pulsdauer von 1 ms und dem Flipwinkel
von 180° gew&hlt.

Die Konzentration der Kochsalzlésung wurde in Ubereinstimmung mit der experimentellen Stu-
die von 1 % bis 4 % variiert. Die Leitfihigkeiten der Kochsalzlésung wurden gemifi STOGRYN
(1971) den gew#hlten Konzentration angepasst. Tabelle 6.8 gibt die entsprechenden Leitfahig-
keiten wieder.

Das elektrodynamische Problem wurde wiederum mit dem PSBCGR-Algorithmus im Frequenz-
bereich (vgl. Abschnitt 2.3) mit dem Programmpaket MAFIA gelost. Aus der berechneten elek-
trischen Feldverteilung wurde die deponierte Leistung bestimmt. Eine Analyse der im Experi-
ment verwendeten Turbo Spin Echo Sequenz ergab, dass die Gesamtdauer der HF-Einstrahlung
18,24 s betrug. Diese Zeitdauer wurde in Gleichung (4.8) verwendet, um eine obere Grenze fiir
die maximal zu erwartende Erwidrmung an der Hirnelektrode abzuschétzen.

Tabelle 6.8 gibt die so ermittelten Ergebnisse wieder. Es zeigte sich, dass bei zunehmender Salz-
konzentration bei 63,9 MHz die maximale Erwirmung von 183,2 mK auf 20,9 mK zuriickging.
Bei 8,3 MHz wurden Temperaturen von 91,2 mK bis 70,8 mK beobachtet.

Diese Abnahme ist auf eine Zunahme der elektrischen Wirbelstrome in den Randgebieten des
Phantoms zuriickzufiihren, was wiederum einen stérkeren Abfall des elektrischen Feldes im In-
neren des Phantoms erzeugt und damit zu niedrigeren Erwdrmungen fiihrt. Dieser Effekt wurde
auch schon bei der Kabelphantomstudie in Abschnitt 6.2.6 beobachtet.
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Die berechneten maximalen Erwdrmungen bestitigen die experimentellen Ergebnisse in der Ar-
beit von TRONNIER ET AL. (1999B), die mit ihrem Messaufbau keine Erwirmung nachweisen
konnten, da die Warmebildkamera aufgrund ihres Temperaturaufldsung nur Erwdrmungen iiber
150 mK registrieren kann. Im Experiment fiel dazu noch die tatsdchliche Erwdrmung an den
Elektroden aufgrund des Warmetransports bei gepulstem HF-Feld deutlich geringer aus, der bei
der Berechnung der maximalen Erwdrmung vernachléssigt wurde.

Die Ergebnisse dieser Studie wurden bereits ver6ffentlicht (GOLOMBECK ET AL., 1999; Go-
LOMBECK & DOSSEL, 2000; GOLOMBECK ET AL., 2000C; GOLOMBECK ET AL., 2000B; GO-
LOMBECK ET AL., 20004).

6.2.8 Diskussion der experimentellen und numerischen Ergebnisse

In den vorstehenden Abschnitten wurden Experimente, numerische Modelle und theoretische
Uberlegungen zur Problematik der Kabel- und Elektrodenerwirmung durch die Felder eines MR-
Tomographen vorgestellt. Die Ergebnisse der in den Abschnitten 6.2.5 und 6.2.6 numerischen
Studie lassen Riickschliisse auf die in Abschnitt 6.1.3 vorgestellten Arbeiten und in Abschnitt
6.2.7 présentierten eigenen Ergebnisse zu.

Es konnte gezeigt werden, dass mit Hilfe einer feldtheoretischen Abschétzung die Amplitude der
elektrischen Feldverteilung im Inneren eines quaderférmigen Salzwasserphantoms n&herungs-
weise berechnet werden kann. Bei dieser Abschitzung wurden allerdings keine Elektroden oder
Kabel im Phantom berticksichtigt und es stellt sich die Frage, inwieweit die Ergebnisse der
Naherungslosung fiir die Vorhersage von Erwdrmungen bei Kabeln anwendbar sind.

Abbildung 6.20 zeigt den Einfluss eines Kabels auf die Stromdichteverteilung im Inneren des
Phantoms (Modell 2). Ist kein Kabel vorhanden, so ergibt sich ein fast kreisfSrmiger Wirbel-
strom. Bei vorhandenem Kabel ist zwar noch der Wirbelstrom zu erkennen, allerdings ergeben
sich erhebliche Verinderungen der Wirbelstromverteilung. Es zeigen sich z. B. auch Uberh&hun-
gen der Stromdichte an den abisolierten Enden des Kabels. Die Naherungslésung fiir die elek-
trische Feldamplitude (6.38) berticksichtigt diesen Effekt nicht.

Die numerischen Ergebnisse in Abschnitt 6.2.7 zeigen beim Vergleich mit den Feldverldufen in
Abbildung 6.13 groBe Ahnlichkeit (C-Magnet). Die Erwdrmung an der Kabel- oder Elektro-
denspitze nimmt zu, je weiter auflen im Phantom sie sich befindet. Die Form der Tempera-
turzunahme &hnelt dem elektrischen Feldverlauf eines Phantoms ohne Elektrode. Daraus l&sst

NaCl-Konzentration 1% 2% 3% 4%
Leitfahigkeit 1,80 S/m 3,02S/m 4,24S/m 5,46 S/m
8,3 MHz 912mK 73, 7mK 70,8mK 77,8 mK
63,9 MHz 183,2 mK 80,2 mK 452 mK 20,9 mK

Tabelle 6.8: Absolute maximale Erwarmung an der Tiefenhirnstimulationselektrode im Salzwasser-

phantom im schlimmsten Fall nach 18,24 s HF-Einstrahlung bei 8,3 MHz und 63,9 MHz und vier

verschiedenen Konzentrationen der Kochsalzldsung im Phantom. Bei héherer Salzkonzentration steigt

die Leitfahigkeit der Salzlésung und die Wirbelstréme in den duBeren Bereichen des Phantoms neh-

men zu und verringern so die Energiedeposition an der Elektrode in der Phantommitte. Die maximale
Erwarmung nimmt dadurch ab.
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6.2 Salzwasserphantome und Magnetresonanztomographie

B & & & & & @ & & @ & £
¢ T @ oo e a§ ¢ e
P A A - N
T eeamaad Q4
e e B, &
PE A s N

geoenqqqgqy
Foro eyl aee|
P X N NN N S N SN |
L gl o R L NN N e Tt |
P K ol L R L N N N S O I

P S S Y

P A XY

LYY
1

1

1

[
-
’
PP
Fd

L T R Y
A R R

A F P b A oamaaa e B

¥

Ny e
e e e P
A R R B B ]
N Nt p P

P A A L . Y
‘. . -

A rrrm e ane(od
4
4
!
1
4
t
!
I 4
I'4
’
»
rd
rd

P o N

PR A o Y
A e B

A T
e NS d s P

A
P e e Y vy eyl s S P

P e w % % B o et S P P

/
4
4
{
$
b
b
b
b
»

L LY VYV YN
3T W B -NE - N
e @ & & ® ® ¢ & &

[ R RS L EF-E F W NN
IFEEEEREEFRENERNEN.]
[EEEXEERE RSN

-
L4
¢
d
i
\
\
\
»
“*
A

0 0 o P e—tnht f 444 g
IR At o SN NE N N )

¢ e o bbb ST a LS PPV e e a
IR RS N A NN

-
o
4
{
i
A
b
v
»
~

L]
L3
L
q
N
N
(-
L
%
4
A
~
e
-
#
»
2
»
@
L ]

ll.uac-rrrv"/](‘

LI BN B g g g it

(a) (b)

Abbildung 6.20: Stromdichtewirbel im Phantom ohne Kabel (a) und mit Kabel (b) bei R-

Magnetkonfiguration. Ist kein Kabel im Phantom vorhanden, so ergibt sich bis auf einige Reflexionen

am Rand ein symmetrischer kreisférmiger Wirbelstrom. Bei vorhandenem Kabel in Bild (b) zeigt

sich eine deutliche Verdanderung des Wirbelstrommusters mit Uberhéhungen der Stromdichte an den
abisolierten Kabelenden und damit eine héhere deponierte Leistung.

sich folgern, dass bei Kenntnis der elektrischen Feldverteilung im Phantom auch Aussagen tiber
die Erwdrmung in Abhéngigkeit der Kabelposition mit der feldtheoretischen Naherungslésung
gemacht werden koénnen.

Bei den verschiedenen Kabelpositionierungen ergaben sich ausgezeichnete Positionen beziiglich
der Ausrichtung des magnetischen Grundfelds (R- oder C-Magnet), die besonders hohe spezi-
fische Absorptionsraten an den Kabelspitzen ergaben. Entscheidend fiir die Erwérmung ist der
Verlauf der Wirbelstréme im Phantom. Abbildung 6.3 zeigt den Zusammenhang zwischen HF-
Anregung und Wirbelstrombildung im Phantom. Beim C-Magneten verlaufen die Wirbelstrome
stets in Ebenen senkrecht zur xy-Ebene in der die Kabel liegen. Die berechneten SAR-Werte
im C-Magneten liegen beim spitzen Kabelende nur manchmal tiber den Werten beim flachen
Kabelende und sind meistens ungeféhr gleich grof. Die Kabel liefern im C-Magneten daher nur
einen geringen Anteil zur resultierenden Erwirmung. Die berechneten SAR-Werte wéren auch
ohne inliegende Kabel in der C-Magnetkonfiguration ungefihr gleich grofi. Beim R-Magneten
gibt es Wirbelstrome, die in der Kabelebene verlaufen und dann deutlich héhere spezifische
Absorptionsraten erzeugen (vgl. mit Tabellen 6.2, 6.3, 6.4 und 6.5).

Fiir Patienten folgt daraus eine einfache Sicherheitsregel. Bei einer MR-Untersuchung ist die Aus-
richtung des statischen Magnetfelds zur Ebene, in der das Schrittmacherkabel liegt, zu beachten.
Szenarien, in denen das Grundfeld senkrecht zur Kabelebene ist, zeigen geringere Erwirmun-
gen an den Elektrodenspitzen (C-Magnet in der Phantomstudie), als statische Felder parallel
zur Kabelebene. Bei Kenntnis der Kabellage im Ko&rper des Patienten kann durch eine entspre-
chende Lagerung oder Auswahl eines MR-Tomographen mit geeigneter Bauart (unterschiedliche
Grundfeldrichtungen) das Risiko einer gewebeschidigenden Erwirmung reduziert werden.
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Magnetische Hochfrequenzfelder bei der Magnetresonanztomographie

Erstaunlich ist aber, dass die Kabelpositionen von Modell 1 und 2 h6here maximale SAR-Werte
ergaben als bei Modell 3. Dies ist vermutlich dadurch bedingt, dass in den Ecken des Phan-
toms, in denen die Kabelenden von Modell 3 zu liegen kommen, die Stromdichte abnimmt (vgl.
Abbildung 6.20) und aufien an den Seitenmitten des Phantoms die Stromdichte und damit das
elektrische Feld seine Maximalwerte erreicht. Das Kabel in Modell 4 liegt mit seinen Enden zwar
in Bereichen mitunter hoher Feldstirken, was aber aufgrund der senkrecht auf den Kabelenden
stehenden Stromdichte nur zu einer geringen spezifischen Absorptionsrate fiihrt.

Fiir die Erwdrmung eines Kabelendes ist daher nicht nur die absolute Lage des Kabelendes in
Gebieten hoher Feldstérke von Bedeutung, sondern vielmehr auch der Verlauf des Kabels entlang
der resultierenden Feldlinien. Anders ausgedriickt spielt der Potentialunterschied zwischen zwei
Punkten im Phantom mit eine Rolle, der sich durch Losung des Linienintegrals U = § E - ds
ergibt. Dies ist aber nicht das allein entscheidende MaB, da aufgrund dieser Uberlegung bei
Modell 2 aufgrund des langeren Kabels hohere SAR-Werte zu erwarten wéren, als bei Modell 1,
was aber nicht der Fall ist, da das Kabel bei Modell 2 etwas weiter im Inneren des Phantoms
liegt als bei Modell 1. Betrachtet man noch einmal die Wirbelstromverteilung in Abbildung 6.20,
so ist sofort ersichtlich, dass Modell 4 mit einer Kabelposition exakt in der Phantommitte bei
beiden statischen Magnetfeldausrichtungen nur geringe SAR-Werte an den Kabelenden ergibt.

Mit diesem Hintergrund lassen sich auch die unterschiedlichen experimentellen Ergebnisse von
LUECHINGER ET AL. (1999) und TRONNIER ET AL. (1999B) verstehen. Im Falle des kugelférmi-
gen Salzwasserphantoms wurde die Elektrode immer exakt im Zentrum des Phantoms platziert,
was mit der Kabelposition von Modell 4 vergleichbar ist und nach der obigen Argumentation
nur geringe SAR-Werte ergibt. Die Tatsache, dass in den Arbeiten von LUECHINGER relevante
Erwdrmungen beobachtet wurden liegt auch in diesen Fillen an den verwendeten Kabelpositio-
nen, die mit Modell 1, 2 oder 3 vergleichbar sind.

Bisher ungeklart erscheint die unterschiedliche zeitliche Entwicklung der Erwirmung im Experi-
ment und in der numerischen Simulation. Abbildung 6.2 zeigt den typischen Temperaturverlauf
bei einer faseroptischen Temperaturmessung an einer Elektrodenspitze im Salzwasserphantom.
Die Temperatur erreicht in kurzer Zeit ihr Maximum und bleibt dann auf einem konstanten Wert,
bis die MR-Sequenz beendet wird. Im Gegensatz dazu zeigt Abbildung 6.16 in der numerischen
Betrachtung einen exponentiellen Kurvenverlauf.

Der Unterschied im zeitlichen Verhalten liegt méglicherweise in der Tatsache begriindet, dass sich
im Salzwasser zusétzlich zur Warmediffusion eine Konvektionszone aufbaut, die einen zusétz-
lichen Warmeabtransport von der Elektrodenspitze erzeugt. Dieser zusitzliche Warmetrans-
portmechanismus wurde bei der numerischen Berechnung nicht berticksichtigt. Verwendet man
statt einer Kochsalzlésung eine feste Fiillmasse, z. B. Agar-Agar, so werden im Experiment
auch exponentielle Temperaturkurven gemessen, da sich dann keine Konvektionszone an der
Elektrodenspitze ausbilden kann (BIELER, 2000).

Unter diesen Gesichtspunkten stellen die mit dem thermodynamischen Algorithmus berechneten
maximalen Erwdrmungen wiederum eine obere Grenze fiir die Erwirmung an der Kabelspitze
dar, die allerdings viel genauer als die Werte der einfachen Abschitzung sind.

Vergleicht man die gemessenen maximalen Erwdrmungen an den Kabelenden in Abschnitt 6.2.7.1
mit den berechneten Erwirmungen an den Kabelenden von Modell 1 in Abschnitt 6.2.6 bei
63,9 MHz, so zeigt sich, dass die maximale gemessene Erwarmung von 7,4 K ungefihr ein Vier-
tel der Erwarmung von 28,9 K am Ende der MR-Sequenz bei Modell 1 ergibt. Berticksichtigt
man aber, dass eher die Kabelposition 3 dem experimentellen Aufbau der Studie in Abschnitt
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Abbildung 6.21: MR-Aufnahme eines Kopfes mit

Tiefenhirnstimulationselektrode zur Behandlung

der Parkinsonkrankheit. Die Stimulationselektrode

wird bei diesem Verfahren im Zentrum des Kopfes
in der Thalamusregion positioniert.

6.2.7.1 entspricht, so muss die bei Modell 1 erhaltene Erwarmung noch einmal reduziert werden,
da bei Kabelposition 3 kleinere SAR-Werte berechnet wurden. Auflerdem beriicksichtigt die
thermodynamische Berechnung keine Kiihlungseffekte durch lokale Konvektionszonen. Damit
kann man durchaus von einer relativ guten Ubereinstimmung zwischen Simulation und Messung
sprechen. Vergleicht man diese Ergebnisse mit Werten aus der Arbeit von LUECHINGER ET AL.
(1999), wo Erwdrmungen von iiber 30 K gemessen wurden, so zeigt sich auch hier eine gute
Ubereinstimmung der numerischen und experimentellen Ergebnisse.

Im Rahmen dieser Arbeit wurde allerdings keine Abh&ngigkeit der Erwirmung von der Ka-
bellinge betrachtet. Entspricht die Kabellinge der jeweiligen Wellenlinge im Salzwasserphan-
tom, so sind besonders hohe Erwidrmungen zu erwarten (LUECHINGER, 2002). Die in dieser
Arbeit verwendeten Kabelldngen wurden bewusst so gewéhlt, dass keine Resonanzeffekt entste-
hen. Um den Einfluss der Kabellinge auf die entstehende Erwdrmung zu untersuchen sind daher
weitere numerische Studien notwendig. Dabei miissen auch andere Kabeleigenschaften, die das
Resonanzverhalten des Kabels beeinflussen mit berticksichtigt werden.

Die numerische Studie in Abschnitt 6.2.6 konnte einen wichtigen Beitrag zum Verstindnis ex-
perimenteller Studien mit salzwassergefiillten Phantomen und Elektroden im MR-Tomographen
liefern. Allerdings bleibt die Frage offen, inwieweit diese Ergebnisse direkt auf den Menschen
tibertragbar sind und ob gefundene kritische Erwarmungen in Phantomstudien automatisch ei-
ne Gefahrdung fiir den Patienten bedeuten. Diese Frage lasst sich nur mit Hilfe hochaufgeloster
Koérpermodelle beantworten und wird im n#chsten Unterkapitel diskutiert.

6.3 Simulationen mit hochaufgelésten Kérpermodellen

Trotz der zahlreichen Ergebnisse numerischer Studien mit Salzwasserphantomen bleibt die Frage
offen, welche Relevanz diese Ergebnisse tatsédchlich flir Patienten besitzen. Aus diesem Grund
wurden zwei hochaufgeldste Modelle des menschlichen Koérpers mit implantierten Elektroden
erstellt, die sich an den vorgestellten Studien mit Salzwasserphantomen aus Abschnitt 6.2.7
orientieren. Im néchsten Abschnitt wird ein hochaufgelostes Kopfmodell mit implantierter Tie-
fenhirnstimulationselektrode zur Behandlung der Parkinson-Krankheit vorgestellt. Im darauf
folgenden Abschnitt wird ein Oberkorpermodell mit Herzschrittmacherelektrode beschrieben.
Ziel der numerischen Untersuchung bei beiden Modellen war die Berechnung der Erwérmung an
der Elektrodenspitze durch das HF-Feld in der MR-Tomographie.

135



Magnetische Hochfrequenzfelder bei der Magnetresonanztomographie

6.3.1 Tiefenhirnstimulation zur Behandlung der Parkinsonkrankheit

Die Stimulation von Hirngewebe zur Behandlung der Parkinsonschen Krankheit und anderen
Schmerz- oder L&hmungszustdnden gehdrt heute zu den Standardverfahren der neurochirurgi-
schen Praxis (RONNIER ET AL., 19994).

Bei der Tiefenhirnstimulation (Deep Brain Stimulation - DBS) wird insbesondere die Thalamus-
region, die in etwa im Zentrum des Schidels liegt, mit speziellen Hirnschrittmacherelektroden
stimuliert. Um den Erfolg der Therapie nach der Implantation der Elektroden und Schrittmacher
zu liberwachen, ist es notwendig, Bilder vom Kopf des Patienten aufzunehmen. Die Magnetreso-
nanztomographie ist aufgrund ihrer hervorragenden Bildqualitit dafiir besonders gut geeignet.
Abbildung 6.21 zeigt ein Schnittbild eines Patienten mit einer Tiefenhirnstimulationselektrode.

Bei einer MR-Aufnahme setzen sich diese Patienten aber dem Risiko der Elektrodenerwérmung
durch Leistungsaufnahme aus dem MR-HF-Feld aus. Um Risiken fiir Patienten auszuschlie-
len wurde bereits eine experimentelle Studie mit einem kugelférmigen Salzwasserphantom in
Abschnitt 6.2.7 vorgestellt (TRONNIER ET AL., 1999B), bei der keine Erwirmung festgestellt
werden konnte. Eigene numerische Untersuchungen an einem Phantommodell untermauerten die
experimentellen Ergebnisse.

Da ein allgemeiner Schluss von den numerischen und experimentellen Ergebnissen einer Phan-
tomstudie auf den menschlichen Koérper nicht uneingeschriankt moglich ist, wird in diesem Ab-
schnitt eine numerische Studie mit einem hochaufgeldsten Modell des menschlichen Kopfes vor-
gestellt, mit dem die Erwirmung an einer implantierten Hirnstimulationselektrode durch das
HF-Feld eines MR-Tomographen berechnet wird. Der Modellaufbau orientiert sich dabei an der
klinischen Anwendung der Tiefenhirnstimulation.

Die Grundlage des numerischen Kopfmodells ist der MEET-Man Koérperdatensatz. Dies ist ein
hochaufgeléstes Computermodell des menschlichen Koérpers, welches aus iiber 400 Millionen
kubischen Voxeln von 1 mm?® Grée besteht, die in 44 Gewebearten klassifiziert sind (SACHSE
ET AL., 2000B). Aus diesem Kérperdatensatz wurde der Kopf ,ausgeschnitten” und in ein
kubisches Gitternetz mit 0,6 m Kantenlinge zentriert eingefiigt. Die Gitterschrittweite wurde
dabei zwischen 6 mm und 1 mm variiert, um in der Elektrodenregion im Zentrum des Kopfes
feiner aufzulésen als in den umliegenden Geweberegionen oder dem Aussenraum. Insgesamt
ergab sich so ein Gitternetz mit ca. 3300000 Voxeln.

Die Elektrode wurde senkrecht von oben in das Zentrum des Kopfes ,,implantiert® und be-
steht aus zwei Wiirfeln aus Platin-Iridium (Kantenlinge 2 mm), die tiber Drdhte mit einem
Widerstand von 5 M) am oberen Rand des Rechenvolumens verbunden sind. Dieser Wider-
stand simuliert den Eingangswiderstand des Hirnschrittmachers. Die Zuleitungsdriahte wurden
in eine isolierende Umbhiillung aus Polytetrafluoroethylene (PTFE) eingebettet. Die Geometrie
der Elektrode musste aufgrund der Modellgrée mit {iber 3000000 Voxeln und dem dadurch
bedingten hohen Speicherbedarf stark vereinfacht werden (vgl. Abschnitte 5.2.7 und 6.2.7.2).

Abbildung 6.22 zeigt eine Ansicht des numerischen Modells. Die gut zu erkennende PTFE-
Isolation des Elektrodenkabels verlduft parallel zur Richtung des statischen magnetischen Grund-
felds in z-Richtung. Die HF-Anregung wird durch zwei Helmholtzspulenpaare erzeugt. Aufgrund
der Lage des Kopfes und der Helmholtzspulenpaare stellt diese numerische Anordnung einen MR-
Tomographen mit Rohrenmagnet (R-Magnet) dar. Die Stromstérke in den Spulenpaaren wurde
so gewihlt, um eine Pulsdauer von 1 ms fiir einen 180°-Puls zu erhalten.
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Abbildung 6.22: Numerisches Kopfmodell mit
implantierter Tiefenhirnstimulationselektrode. Die
Elektrode liegt im Zentrum des Kopfes und ist
iber zwei Drahte an einen Abschlusswiderstand
angeschlossen. Die Feldanregung wurde mit zwei
Helmholtzspulenpaaren realisiert. Die Zuleitung
des Elektrodenkabels liegt genau im Zentrum des
Spulensystems und zeigt in Richtung des stati-

schen magnetischen Grundfelds. Dies entspricht ei-
nem MR-Tomographen mit einem R-Magneten.

Das so definierte elektrodynamische Problem wurde im Frequenzbereich bei drei Frequenzen
(8,3 MHz, 42,6 MHz und 63,9 MHz) mit dem PSBCGR-Algorithmus gelést (magnetische Grund-
feldstidrken von 0,2 T, 1,0 T und 1,5 T) . Aus der resultierenden elektrischen Feldverteilung
wurde mit Gleichung (4.7) die deponierte Leistung im Kopfmodell berechnet, die dann als Ein-
gabeparameter fiir den thermodynamischen Algorithmus diente.

In Anlehnung an die vereinfachte MR-Sequenz des kugelférmigen Salzwasserphanoms aus Ab-
schnitt 6.2.7.2 wurde auf ein reales MR-Sequenztiming verzichtet. Stattdessen wurden alle ein-
zelnen HF-Pulse der im Experiment verwendeten Turbo Spin Echo Sequenz aufsummiert und
auf einmal eingestrahlt (hier 18,24 s Gesamt-HF-Zeit). Dies stellt fiir die HF-Belastung des Pati-
enten den schlimmsten Fall dar. Mit dieser Annahme wurden zum einen mit Hilfe der einfachen
Abschitzung nach Gleichung (4.8) und zum anderen mit dem thermodynamischen Algorithmus
die Erwarmung im Kopfmodell berechnet und miteinander verglichen.

Diese Vorgehensweise stellt eine starke Vereinfachung einer MR-Sequenz dar. Im Prinzip miisste
die berechnete Leistung im Kopfmodell noch an das Puls-Pausen-Verhéltnis der HF-Einstrahlung

Messpunkt | Einfache Abschitzung Thermodynamik Uberschitzung
in K in K in %
Elektrode 310,174 310,062 180,74
CSF 1 310,109 310,039 184,40
CSF 2 310,230 310,173 32,70

Tabelle 6.9: Vergleich der absoluten Erwarmung an drei lokalen heiBen Stellen im Kopfmodell

zwischen der einfachen Abschatzung mit dem thermodynamischen Algorithmus nach einer HF-

Einstrahlung von 18,24 s Dauer (63,9 MHz) und einer Ausgangstemperatur von 310 K. Die maximale

Erwdrmung wurde in der cerebrospinalen Fliissigkeit (CSF) beobachtet und nicht an der Elektroden-

spitze selbst. Betrachtet man das Verhaltnis der Temperaturzunahme in beiden Fallen, so ergibt sich

bereits nach der kurzen Simulationsdauer eine Uberschitzung der maximalen Erwirmung um fast
den Faktor zwei mit der einfachen Abschatzung.
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310,00 K lineare Skala >310,15 K

Abbildung 6.23: Zeitlicher Verlauf der Erwdrmung im hochaufgeléstem Kopfmodell berechnet mit

dem thermodynamischen Algorithmus. der zeitliche Abstand der Einzelbilder betragt 2 s. Bei der Dar-

stellung wurde diejenige Schicht gewdhlt (xy-Ebene), in der die maximale Erwarmung von 310,173 K
in der cerebrospinalen Fliissigkeit auftritt.

angepasst werden. Fiir die einfache Abschitzung nach Gleichung (4.8) spielt das aber keine
Rolle, da bei angepasster Leistung auch mit einer lingeren Sequenzdauer gerechnet werden
miisste. Die Ergebnisse wiren in beiden Féllen die gleichen. Nicht so beim thermodynamischen
Algorithmus, da in diesem Fall durch die drastische Verkiirzung der Sequenzdauer ein Grofteil
der Diffusionszeit wegféllt, in der die Warme mehr an das umliegende Gewebe verteilt werden
kénnte. Dadurch ergibt sich auch in der thermodynamischen Betrachtung ein ,,Schlimmster
Fall“, zumal bei dieser Simulation auch die Gewebeperfusion vernachlissigt wurde, die einen
zusdtzlichen Kiihlungseffekt erzeugt.

Der Vorteil dieser Vorgehensweise liegt in der daraus resultierenden Verkiirzung der bendtigten
Rechenzeit, da bei der Iteration weniger Zeitschritte notwendig sind. Dieses vereinfachte Verfah-
ren kann dann eingesetzt werden, wenn die Berechnung einer oberen Schranke der Erwdrmung
ausreichend ist. Ergeben sich bei diesem Verfahren aber unzulidssige Erwdrmungen oder sind
genauere Einblicke in den zeitlichen Verlauf der Erwidrmung wihrend einer MR-Sequenz not-
wendig, so muss das Sequenztiming explizit modelliert werden. Dies wurde bereits im Rahmen
einer Diplomarbeit am Institut fiir Biomedizinische Technik der Universitit Karlsruhe (TH)
untersucht (THIELE, 2002) und verdffentlicht (GOLOMBECK ET AL., 2002¢; THIELE ET AL.,
2002).

In Tabelle 6.9 sind die Erwdrmungen an drei ausgesuchten Punkten im Kopfmodell angegeben.
Die erfassten Punkte befinden sich an der Elektrodenspitze und der cerebrospinalen Fliissigkeit
im vorderen und hinteren Bereich des GroBhirns. Alle drei Punkte stellen in den beobachteten
Kopfregionen die lokalen Erwdrmungsmaxima dar. Die Ausgangstemperatur des Kopfmodells
wurde homogen mit 310 K angenommen.

Die mit der einfachen Abschitzung berechneten Werte iibersteigen die thermodynamische
Losung in zwei Fallen um fast den Faktor zwei. Die maximale Erwirmung wird wider Erwarten
nicht an der Elektrode beobachtet sondern in der cerebrospinalen Flissigkeit im hinteren Bereich
des Kopfes. Die Temperaturzunahme bleibt aber selbst bei der Schlimmsten-Falls-Abschitzung
mit 0,230 K unter der nach der IRPA (1991) maximal zulissigen Erwdrmung im Kopf von 1,0 K
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N I |
310,00 K lineare Skala >310,15 K

Abbildung 6.24: Vergleich zwischen der berechneten Erwarmung im Kopfmodell nach 10 s HF-

Einstrahlung, die mit der Schlimmsten-Falls-Abschdtzung (rechtes Bild) und dem thermodynami-

schen Algorithmus (linkes Bild) berechnet wurde. Die Beriicksichtigung des Warmetransports fiihrt

sowohl zu einer Verringerung der Erwdrmung an den lokalen , heiBen® Stellen, als auch zu einer
gleichmaBigeren Temperaturverteilung.

bei gesunden und 0,5 K bei schwangeren Personen. Dies gilt auch fiir die maximale Erwirmung
von 0,174 K an der Elektrodenspitze.

In Abbildung 6.23 ist der Zeitverlauf der Erwirmung bei einem Schnitt (zy-Ebene) durch den
Kopf im Groflhirn und der cerebrospinalen Fliissigkeit in einem Zeitraum von 0 s bis 18 s konti-
nuierlicher HF-Einstrahlung dargestellt. Ausgehend von einer homogenen Ausgangstemperatur
von 310 K wurde die zeitliche Entwicklung der Schicht gew&hlt, in der die maximale Erwirmung
der cerebrospinalen Fliissigkeit im hinteren Bereich des Kopfes auftritt.

Abbildung 6.24 vergleicht in einer Darstellung derselben Schnittebene wie in Abbildung 6.23 die
Erwdrmung des Gewebes nach 10 s HF-Einstrahlung zwischen der einfachen Abschitzung und
der thermodynamischen Betrachtung. Durch die Warmediffusion ergibt sich beim thermody-
namischen Algorithmus eine gleichmé&Bigere Warmeverteilung ohne ,scharfe“ Kanten zwischen
einzelnen Gewebeklassen.

Weitere Einblicke in die Temperaturverteilung erlaubt die dreidimensionale Darstellung der
Erwidrmung des Kopfmodells nach 18,24 s HF-Einstrahlung in Abbildung 6.25, bei der ein Teil
des Kopfes ausgeschnitten ist, so dass ein Einblick in das Gehirn moglich ist. Diese Abbildung
verdeutlicht die Erwdrmung der cerebrospinalen Fliissigkeit, in der aufgrund ihrer hohen, mit
Blut vergleichbaren Leitfahigkeit (vgl. Tabelle B.2 und B.3) ein besonders grofier Energieverlust
stattfindet.

Die maximale lokale Erwarmung an der Elektrodenspitze nach 18,24 s HF-Einstrahlung wird in
Abbildung 6.26 wiedergegeben.

Die numerischen Ergebnisse des Kopfmodells entsprechen den berechneten Erwidrmungen an den
Elektroden des kugelférmigen Salzwasserphantoms in Abschnitt 6.2.7.2. Ausgehend von diesen
Ergebnissen ist eine MR-Tomographie unter Berticksichtigung der gew&dhlten MR-Parameter als

139



Magnetische Hochfrequenzfelder bei der Magnetresonanztomographie

Abbildung 6.25: 3D-Darstellung der Erwarmung

im Kopfmodell nach 18,24 s HF-Einstrahlung. Die

Punkte maximaler Erwarmung finden sich in der

cerebrospinalen Fliissigkeit im hinteren Bereich des
Kopfes.

ungefihrlich beziglich der Erwarmung an der Elektrodenspitze einzustufen. Es sind keine irre-
versiblen gewebeschéidigenden Effekte zu erwarten. Da bei dieser numerischen Studie auflerdem
die Gewebeperfusion vernachléssigt wurde, ergibt sich in der Realitit eine weitere Verringerung
der resultierenden Temperaturzunahme.

Die Tatsache, dass an den Elektrodenspitzen weder in den Experimenten von TRONNIER
ET AL. (1999B) noch in den numerischen Modellen dieser Arbeit eine gesundheitlich relevante
Erwdrmung beobachtet wurde, lasst sich mit den Ergebnissen aus Abschnitt 6.2.6 verstehen.
Da sich bei allen untersuchten Fillen die Elektrode stets im geometrischen Zentrum des MR-
Tomographen oder Helmholtzspulensystems befand, was der Kabelposition 4 in Abschnitt 6.2.6
entspricht, wird aufgrund der dort dargestellten Zusammenhénge nur eine minimale Erwdrmung
erwartet.

Eine C-Magnetkonfiguration des statischem Magnetfelds wurde in dieser numerischen Studie
nicht betrachtet. Ausgehend von den Ergebnissen aus Abschnitt 6.2.6 kann aber auch hier ver-
mutet werden, dass sich bei einer MR-Untersuchung in einem C-Magneten &hnliche geringe
Erwarmungen bei gleichen MR-Parametern ergeben diirften.

Die Ergebnisse dieser Studie wurden bereits veréffentlicht (GOLOMBECK ET AL., 1999; GOLOM-
BECK ET AL., 2000¢; GOLOMBECK ET AL., 2000B; GOLOMBECK ET AL., 2000A; GOLOMBECK
ET AL., 2002A).

6.3.2 Erwirmung von Herzschrittmacherelektroden im MR-Tomographen

Eine oft experimentell untersuchte Fragestellung ist die Erwadrmung von Herzschrittmacherelek-
troden im MR-Tomographen. Neben Funktionsstérungen der integrierten Elektronik stehen in
erster Linie gewebeschidigende Erwirmungen an den Elektrodenspitzen im Blickfeld zahlreicher
experimenteller Untersuchungen mit salzwassergefiillten Phantomen (vgl. Abschnitt 6.1.3).

Bereits in Abschnitt 6.2.6 wurde die Frage aufgeworfen, ob diese Ergebnisse ohne Einschriankung
auf den Menschen tibertragen werden kénnen und damit Warnungen vor gesundheitlichen Ge-
fahren tiberhaupt berechtigt sind, wenn in Phantomstudien gewebeschidigende Erwirmungen
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Abbildung 6.26: Erwdrmung an der einfachen

Elektrodenspitze im Kopfmodell nach 18,24 s HF-

Einstrahlung. Die maximale Temperaturzunahme
an der Elektrode ergab sich zu 62 mK.

nachgewiesen wurden. In diesem Abschnitt wird daher ein inhomogenes hochaufgeléstes nume-
rische Modell eines menschlichen Oberkérpers mit implantiertem Herzschrittmacher und Stimu-
lationselektrode vorgestellt.

Das numerische Modell basiert auf dem MEET-Man Datensatz (SACHSE ET AL., 2000A) und
besteht aus ca. 2200000 Voxeln. Die Gitterauflosung wurde im Bereich des Herzens auf bis zu
1,0 mm verfeinert und an der Elektrodenspitze sogar auf bis zu 0,1 mm. Die Spitze der Elektrode
wurde als Kegel modelliert, was beziiglich der Elektrodenform eine méglichst ungiinstige Wahl
fiir die entstehende Erwérmung darstellt, um eine obere Grenze abschétzen zu kdnnen.

Der Herzschrittmacher wurde als quaderformiger Kasten mit einer Kantenléinge von (50 mm x
60 mm X 10 mm) in der rechten Brusthilfte modelliert. Das Elektrodenkabel mit einer Linge
von 0,64 m wurde in einer Schleife einmal um das Schrittmachergehfuse herum- und bis an die
Herzspitze gefiihrt. Am Ende des Kabels wurde eine kegelférmige Elektrodenspitze mit einer
Lénge von 1 mm angebracht, die sich im Herzmuskelgewebe befindet. Das Elektrodenkabel und
die -spitze wurden aus Platin-Iridium modelliert, die Isolation des Elektrodendrahtes aus PTFE.

Abbildung 6.27 zeigt das numerische Modell in zwei Darstellungen. In Abbildung 6.27a ist das
gesamte numerische Modell zwischen zwei Helmholtzspulenpaaren (C-Magnet) zu sehen, mit
denen die HF-Anregung des MR-Tomographen modelliert wurde. Daneben wurde auch die R-
Magnetkonfiguration beriicksichtigt. Abbildung 6.27b ermdglicht durch ein Schnittbild einen
Einblick in den Oberkérper des Modells und zeigt die Lage des Herzschrittmachers und des
Elektrodenkabels. Das Herz des Patienten liegt dabei genau im Zentrum des Tomographen.

Das elektrodynamische Problem wurde wiederum mit dem PSBCGR-Algorithmus geldst. Bei
dieser Untersuchung wurde eine Feldfrequenz von 63,9 MHz verwendet, was einer magnetischen
Grundfeldstirke von 1,5 T entspricht. Aus der resultierenden elektrischen Feldverteilung wurde
die spezifische Absorptionsrate nach Gleichung (4.7) berechnet und daraus mit der einfachen
Abschétzung nach Gleichung (4.8) die maximale Erwérmung an der Elektrodenspitze bestimmt.

Im néchsten Schritt wurde die zeitliche Entwicklung der Erwéarmung an der Elektrodenspitze mit
dem thermodynamischen Algorithmus berechnet. Dabei wurde im ersten Schritt zunéchst die
Perfusion vernachlassigt und in einem zweiten Durchgang beriicksichtigt. Dies ermdglichte eine
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(a) (b)

Abbildung 6.27: Numerisches Oberkdrpermodell mit implantiertem Herzschrittmacher. Bild (a)
zeigt das Oberkdrpermodell in der Gesamtansicht mit den beiden Helmholtzspulenpaaren zur Feld-
anregung in der Konfiguration eines C-Magneten. Bild (b) zeigt einen Schnitt durch den Oberkérper.
Der Herzschrittmacher liegt in der rechten Brusthalfte und ist mit der Elektrode im linken Ventrikel
iiber ein Kabel verbunden. Aus Darstellungsgriinden wurden in dieser Ansicht die inneren Organe,
sowie andere Strukturen bis auf den Herzmuskel und die Kérpermuskulatur weggelassen.

genauere Betrachtung des ,kithlenden“ Effekts der Durchblutung und sollte beim Verstédndnis
der experimentell beobachteten zeitlichen Temperaturverldufe helfen (vgl. Abschnitt 6.2.1).

In dieser Studie wurden insgesamt vier numerische Modelle erstellt und berechnet und fiir je-
des Modell an der Elektrodenspitze die maximalen Erwdrmungen mit den drei angesprochenen
Verfahren (Einfache Abschétzung, thermodynamischer Algorithmus ohne und mit Gewebeper-
fusion) berechnet. Neben der unterschiedlichen Ausrichtung des magnetischen Grundfelds (R-
oder C-Magnet) wurde der elektrische Kontakt zwischen Elektrodenkabel und Herzschrittma-
chergehiuse als leitend oder nicht-leitend modelliert, was unterschiedliche Betriebszustinde des
Schrittmachers darstellt.

Als MR-Sequenz wurde die in Abschnitt 6.2.6 erwihnte fiktive Turbo Spin Echo Sequenz mit
einer Dauer von 2500 s (1,0 % HF-Anteil) verwendet. Die thermodynamische Simulation wurde

mit Hilfe der adaptiven Zeitschrittsteuerung fiir eine Zeitdauer von 2500 s durchgefiihrt (vgl.
Abschnitt 2.5.3).

Bei der Frage nach der Ubertragbarkeit experimenteller und numerischer Ergebnisse von Salz-
wasserphantomstudien auf den menschlichen Korper hilft die Betrachtung der resultierenden
elektrischen Feldverteilung im Oberkérpermodell. Es wurde bereits gezeigt, dass sich in Salz-
wasserphantomen die elektrischen Felder mit Hilfe einer Niherungslgsung nach Gleichung (6.38)
angeben lassen (vgl. Abbildung 6.13) und aus dem Feldverlauf Hinweise fiir die Erwérmung an
Kabel- und Elektrodenspitzen abgeleitet werden kénnen.

Abbildung 6.28 zeigt im Vergleich zu Abbildung 6.13 den Absolutbetrag der z-Komponente
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Abbildung 6.28: Vergleich der Absolutbetrage der z-Komponente des elektrischen Feldes im mensch-
lichen K&rper bei der Magnetresonanztomographie entlang der x-Achse (a) und der y-Achse (b) durch
die Mitte des Képermodells bei einer Frequenz von 63,9 MHz im R-Magneten (rote Kurven) und C-
Magneten (griine Kurven). Im Gegensatz zu den homogen gefiillten Salzwasserphantomen ergibt sich
beim inhomogenen Korpermodell eine grundverschiedene elektrische Feldverteilung ohne erkennbare

Abhangigkeiten (vgl. Abbildung 6.13).

des elektrischen Feldes im Oberkdrpermodell bei 63,9 MHz im R- und C-Magneten. Im Gegen-
satz zu den homogen gefiillten Salzwasserphantomen ergeben sich beim inhomogenen Korper-
modell abweichende elektrische Feldverteilungen mit zahlreichen lokalen Minima und Maxima.
Dies unterstiitzt die Vermutung, dass Ergebnisse aus Salzwasserphantomstudien nicht ohne Ein-
schrinkungen auf den Menschen iibertragbar sind.

Tabelle 6.10 zeigt die Ergebnisse der berechneten maximalen Erwdrmungen nach einer fiktiven

Magnet Kabel | max. SAR Einf. Abschitzung Thermod. o. Perf. Thermod. m. Perf.
in W/kg in K in K in K
C leitend 5856 41,472 0,053 0,013
C isoliert 5142 36,288 0,046 0,011
R leitend 20425 145,152 0,128 0,046
R isoliert 14811 106,272 0,101 0,034

Tabelle 6.10: Maximale Leistungsabsorption und Erwarmung an der Spitze der Herzschrittmacher-
elektrode bei einer Frequenz von 63,9 MHz und einer Pulsdauer von 1 ms in verschiedenen Magnet-
konfigurationen (C- und R-Magnet). Das Elektrodenkabel wurde entweder leitend mit dem Geh3use
des Schrittmachers verbunden oder war komplett davon isoliert. Aus den maximalen SAR-Werten
wurde unter Annahme eines HF-Anteils von 1 % mit Hilfe der einfachen Temperaturabschitzung
nach Gleichung (4.8) die Obergrenze der zu erwartenden Erwarmung berechnet. Weiterhin wurde
die maximale Erwarmung nach einer MR-Sequenz mit 2500 s Dauer mit dem thermodynamischen
Algorithmus ohne und mit Beriicksichtigung der Gewebeperfusion berechnet und den Werten der
Schlimmsten-Falls-Abschatzung gegeniiber gestellt.
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Abbildung 6.29: Erwdarmung an der Spitze der

Herzschrittmacherelektrode am Ende der simu-

lierten MR-Sequenz von 2500 s Dauer bei lei-

tender Verbindung zwischen Elektrodenkabel und

Gehduse und R-Magnetkonfiguration. Die maxima-

le Erwarmung betragt 46 mK bei Beriicksichtigung
der Gewebeperfusion.

Turbo Spin Echo MR-Sequenz mit 2500 s Dauer. Wie erwartet liegen die Werte der einfachen
Abschitzung deutlich tiber den Erwidrmungen, die mit dem thermodynamischen Algorithmus
berechnet wurden. Die Beriicksichtigung der Perfusion fiihrt zu einer weiteren Verringerung der
maximalen Erwdrmung an der Elektrodenspitze in jedem Fall um ungefihr den Faktor vier.

Beziiglich der Ausrichtung des statischen Magnetfelds zum Korpermodell ergaben sich beim
R-Magneten hohere Erwarmungen als beim C-Magneten. Zusétzlich erzeugt eine leitende Ver-
bindung zwischen Elektrode und Gehé&use gréfere Erwirmungen als ein vom Geh&use isoliertes
Elektrodenkabel. Bei Berticksichtigung der Perfusion ergibt sich beim R-Magneten und leitender
Verbindung zwischen Kabel und Geh&use eine maximale Erwarmung von 46 mK nach 2500 s.
Dieser Fall ist in Abbildung 6.29 dargestellt.

Abbildung 6.30 zeigt die zeitliche Entwicklung der Erwédrmung an der Spitze der Herzschrittma-
cherelektrode wahrend der fiktiven MR-Sequenz im R- und C-Magneten mit und ohne leitender
Verbindung, sowie mit und ohne Gewebeperfusion. Berticksichtigt man die Gewebeperfusion
so ergeben sich nicht nur deutlich niedrigere maximale Erwirmungen an der Elektrodenspitze
sondern auch unterschiedliche Kurvenverlaufe.

Anstatt des exponentiellen Verlaufs der Temperaturkurve bei Vernachlissigung der Gewebeper-
fusion ergibt sich nach kurzer Zeit ein stationirer Zustand der Temperatur an der Elektroden-
spitze, der sich bis zum Ende der Sequenz trotz weiterer HF-Einstrahlung nicht mehr &ndert.
Ohne Beriicksichtigung der Gewebeperfusion erreicht die Temperaturkurve selbst nach 2500 s
keinen stationdren Zustand konstanter Elektrodentemperatur.

Dies dhnelt den experimentellen Beobachtungen in Abschnitt 6.2.1, bei denen bei der Tem-
peraturmessung in Salzwasserphantomen ebenfalls nach kurzer Zeit eine stationdre Tempera-
tur erreicht wurde. Dieses Verhalten wurde mit der Entstehung einer Konvektionszone an der
Elektrodenspitze in Verbindung gebracht. Die Vermutung wird durch das numerische Ergebnis
bekriftigt, da in diesem Fall durch den Blutfluss eine Warmekonvektion hervorgerufen wurde.

Da die Berticksichtigung einer Gewebeperfusion den tatséchlichen Verhéltnissen im menschlichen
Korper entspricht, wire es denkbar bei zukiinftigen Untersuchungen das numerische Verfahren
nach Erreichen eines stationdren Zustands abzubrechen, um so Rechenzeit zu sparen.
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Abbildung 6.30: Vergleich der Erwarmung an der Herzschrittmacherelektrode mit (dicke Linien)
und ohne (diinne Linien) Beriicksichtigung der Gewebeperfusion in der C-Magnet- (a) und der R-
Magnetkonfiguration (b) bei leitender Verbindung (rote Linien) zwischen Elektrode und Schrittma-
chergehduse und isolierter Elektrode (griine Linien) wahrend einer MR-Sequenz von 2500 s Dauer.
Bei Vernachlassigung der Gewebeperfusion wird die Erwarmung an der Elektrode iiberschatzt.

Bei dieser Simulation wurde allerdings davon ausgegangen, dass das thermoregulatorische Sy-
stem des menschlichen Korpers die Bluttemperatur konstant auf 310 K gehalten hat, was ab
einer gewissen HF-Belastung nicht mehr ohne weiteres vorausgesetzt werden darf, da dann die
zusétzliche Wirme nicht mehr durch physiologische Massnahmen abgefiihrt werden kann und
sich der Korperkern {iber den physiologischen Normalbereich erwdrmen kann (IRPA, 1991).

In Ubereinstimmung mit der Kabelphantomstudie aus Abschnitt 6.2.6 zeigte sich, dass die Rich-
tung des magnetischen Grundfelds zur Ebene in der das Elektrodenkabel verlauft einen Einfluss
auf die entstehende Erwirmung an der Elektrodenspitze hat. Abbildung 6.31 verdeutlich die-
sen Zusammenhang. Allerdings hat Abbildung 6.28 gezeigt, dass der elektrische Feldverlauf im
inhomogenen Kérpermodell nicht den Abhéngigkeiten nach Gleichung (6.38) folgt. Dies bedeu-
tet, dass sich im menschlichen Kérper keine globalen rotationssymmetrischen Wirbelstrome wie
in Salzwasserphantomen ergeben (vgl. Abbildung 6.20). Die Erwdrmung des Kérpers im C-
Magneten stimmt aber auch hier vermutlich mit der Erwirmung ohne Elektrode weitgehend
tberein, d. h. dass im C-Magneten praktisch keine zusitzliche Erwdrmung an der Elektroden-
spitze auftritt (vgl. Abschnitt 6.2.6).

Die Ergebnisse dieser Studie gaben in keinem untersuchten Fall einen Hinweis auf eine mogliche
gewebeschidigende Wirkung durch zu grofle Erwédrmungen der Elektrodenspitze wihrend der
simulierten MR-Sequenz. Weiterhin zeigte sich, dass eine Ubertragung der Ergebnisse von Salz-
wasserphantomstudien nicht ohne Einschrinkungen moglich ist, da der inhomogene perfundierte
menschliche Korper ganz andere Rahmenbedingungen vorgibt.

Ein Hinweis auf die in dieser Studie nachgewiesene Effizienz der menschlichen Gewebeperfusion
findet sich in der Arbeit von LUECHINGER (2002), bei der in lebenden Schweinen die Tempera-
tur in den Schrittmacherelektroden wihrend einer MR-Sequenz gemessen wurde. Trotz teilweise
erheblicher Temperaturzunahmen von einigen Kelvin an der Elektrodenspitze gemessen im In-
neren des Elektrodenkabels, zeigte sich nach der Sektion des Herzgewebes keinerlei Hinweis auf
eine thermische Schidigung des Schweineherzens.
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Abbildung 6.31: Vereinfachte Darstellung der Wirbelstromwege im menschlichen Kérper bei ver-

schiedenen Richtungen des statischen Grundfelds bei der Magnetresonanztomographie. In Bild (a)

liegt die lange Kdrperachse parallel zur Richtung des statischen magnetischen Feldes Bg. Der an-

gedeutete Herzschrittmacher mit Elektrode (blau) liegt in einer Ebene, in der auch Wirbelstrome

flieBen. Dadurch kommt es zu mehr Erwdrmung als bei Bild (b), bei dem das statische Feld By
senkrecht zur Schrittmacherebene steht.

Daraus folgt, dass der Nachweis einer gewebeschidigenden Erwdrmung an der Elektrodenspitze
in einer Salzwasserphantomstudie nicht zu dem Schluss fiihren darf, dass dies auch automatisch
bei einem Patienten der Fall ist. Im menschlichen Koérper ist daher in der Regel mit deutlich
niedrigeren Erwirmungen an Elektrodenspitzen zu rechnen, die in den meisten Féllen keine
gewebeschidigende Wirkung zeigen diirften.

Aus dieser Studie darf allerdings keine generelle Unbedenklichkeitserklarung abgeleitet werden,
da nur ein Oberkorpermodell mit einer méglichen Herzschrittmacher- und Kabellage simuliert
wurde. Weiterhin sind Verbesserungen beziiglich der Modellierung des Elektrodenkabels not-
wendig, um die HF-Eigenschaften der oft spiralférmig gewickelten Kabel darzustellen, was im
Rahmen dieser Untersuchungen vernachlédssigt wurde. Es kann aber konstatiert werden, dass bei
der ,normalen® Art, die Herzschrittmacherkabel im Koérper zu verlegen, d.h. in der ,,Frontalebe-
ne“, im C-Magneten mit groBer Sicherheit keine gewebeschidigenden Erwdrmungen auftreten.
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6.4 Wissenschaftlicher Beitrag der Arbeit

In diesem Kapitel wurde die Erwirmung von Elektroden und Kabeln in Salzwasserphantomen
und dem menschlichen Korper durch die HF-Pulse eines MR-Tomographen betrachtet. Dabei
wurden nach einer Einfithrung in die Thematik mit einigen Ausfiihrungen zum Stand der For-
schung zunéichst eigene experimentelle Messungen an einem Oberkoérperphantom beschrieben,
mit denen die Ergebnisse anderer Arbeitsgruppen nachvollzogen werden konnten.

Um ein tieferes Verstdndnis fiir die in den Phantomexperimenten beobachteten Erwirmungen
zu erhalten, wurde in den folgenden Abschnitten eine feldtheoretische Naherungslésung fiir die
Amplitude des elektrischen Feldes in einem quaderférmigen Plexiglasphantom abgeleitet, um
mit Hilfe der Feldverteilung eine Aussage iiber die Abhingigkeit der Erwdrmung an Kabel- und
Elektrodenspitzen von der Positionierung im Phantom machen zu kénnen.

Mit Hilfe einer numerischen Studie als Ergdnzung zu den experimentellen und theoretischen Un-
tersuchungen wurde die elektrische Feldverteilung in 384 numerischen Modellen eines salzwas-
sergefiillten quaderférmigen Plexiglasphantoms mit darinliegendem Kabel in unterschiedlichen
MR-Szenarien untersucht. Neben vier unterschiedlichen Kabelpositionen wurde die Richtung
des statischen Grundfelds, die Pulsdauer, die Leitfdhigkeit der Salzlésung und die Form der
Kabelspitze variiert.

Ein Vergleich der numerischen Ergebnisse mit der theoretischen N&herungsldsung zeigte, dass
der elektrische Feldverlauf im Phantom ab einer Leitfihigkeit der Salzlésung von 0,5 S/m sehr
gut wiedergegeben werden kann. Spitze Kabelenden ergaben in vielen Fillen die doppelte Ener-
giedeposition an der Kabelspitze im Vergleich zu flachen Kabelenden. Die numerischen Ergeb-
nisse zeigten weiterhin, dass die Erwidrmung an der Kabelspitze nicht nur von der Bauform
der Spitze abhéingen, sondern insbesondere von der Orientierung der Kabelebene beziiglich der
Richtung des statischen magnetischen Grundfelds und damit der Richtung der resultierenden
Wirbelstrome. Kam ein Kabel in einer der Wirbelstromebenen zu liegen, so erhohte sich die
Energiedeposition an der Kabelspitze. Besonders grofle Werte wurden erzielt, wenn das Kabel
entlang der Wirbelstromlinien lag. Diese Werte erhShten sich weiter je weiter auflen im Phantom
das Kabel zu liegen kam.

Daraus folgte automatisch die Ableitung einiger Verhaltensregeln zur Minimierung der Risiken
fiir Patienten mit Implantaten wahrend einer MR-Untersuchung. Wenn die Lage des Implantats
bekannt ist, so kann durch eine entsprechende Lagerung des Patienten unter Berticksichtigung
der magnetischen Grundfeldrichtung eine Reduktion der Erwarmung an der Elektrodenspitze
erreicht werden. Wenn eine geschickte Lagerung des Patienten nicht moglich ist, so kann durch
die Wahl eines MR-Tomographen mit anderer Bauform und Grundfeldrichtung eine Risikomi-
nimierung versucht werden.

Mit Hilfe einer einfachen Abschétzung wurde bei einigen ausgesuchten numerischen Modellen
eine obere Grenze fiir die Erwdrmung an der Kabelspitze berechnet und mit den Ergebnissen des
thermodynamischen Algorithmus verglichen. Es zeigte sich, dass die berechneten Erwdrmungen
bei Berticksichtigung des Warmetransports im Salzwasserphantom mit den Ergebnissen eigener
und anderer experimenteller Studien vergleichbar sind.

Die numerischen Ergebnisse wurden im folgenden auf zwei experimentelle Arbeiten mit Salz-
wasserphantomen und Elektroden iibertragen, die zu unterschiedlichen Ergebnissen und Bewer-
tungen der Gefihrdung fiir Patienten kamen. Es zeigte sich, dass die experimentell gefundenen
Abhéngigkeiten der Erwdrmung mit Hilfe der numerischen Ergebnisse bestitigt und aufgeklart
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werden konnten. Der bereits durch die numerische Studie abgeleitete Zusammenhang zwischen
Kabelposition und -verlauf im Phantom und magnetischer Grundfeldrichtung konnte die un-
terschiedlichen Aussagen der experimentellen Studien durch eine Betrachtung der jeweiligen
experimentellen Bedingungen neu bewerten. Dies ldsst sich nun auch auf andere experimentelle
Studien tbertragen.

Das Kapitel schliefit mit der Vorstellung zweier numerischer Studien mit hochaufgeldsten
Modellen des menschlichen Ko&rpers. Im Rahmen dieser Studien wurde die Erwirmung
von Tiefenhirnstimulations- und Herzschrittmacherelektroden durch HF-Pulse bei der MR-
Tomographie untersucht. Es zeigte sich, dass in keinem untersuchten Modell eine gewebeschidi-
gende Erwirmung nachgewiesen werden konnte. Eine gezielte Untersuchung des Kiihlungseffek-
tes der Gewebedurchblutung zeigte dass die Warmekonvektion durch den Blutfluss im menschli-
chen Korper einen entscheidenden Beitrag zur Abkiihlung an Elektrodenspitzen leistet und auf
keinen Fall vernachlissigt werden darf.

Die Ergebnisse dieses Kapitels machen besonders auf die Probleme bei der Bewertung expe-
rimenteller Resultate aus Salzwasserphantomstudien aufmerksam. Eine genauere Analyse der
elektrischen Feldverteilungen in Phantomen und den menschlichen Koérpermodellen ergaben sehr
unterschiedliche Feldverldufe. Die homogen gefiillten Phantome ermdoglichen die Ausbildung von
grofien globalen Wirbelstromgebieten, die im menschlichen Koérper so nicht wiederzufinden sind.
Dadurch sind die gemessenen Erwarmungen an den Elektroden in Phantomen deutlich gréfler. Da
bei Salzwasserphantomen keine Warmekonvektion durch eine Blutstromung berticksichtigt wird,
sondern sich nur lokale Konvektionszonen ausbilden, fehlt bei diesen experimentellen Studien
ein wichtiger Abkiihlungsmechanismus, der zusétzlich zu den hoheren gemessenen Temperatu-
ren beitrégt. Salzwasserphantome iiberschitzen daher die Erwdrmungseffekte in einem hohen
Mafl und miissen in den meisten Fillen als ungeeignet fiir eine Analyse der Patientensicherheit
eingestuft werden.

Aus diesen Griinden muss die Aussagekraft von experimentellen Messungen an Phantomen zur
Bewertung von Risiken fiir Patienten neu tiberdacht werden und damit auch geltende Sicher-
heitsbestimmungen. Die numerischen Ergebnisse dieser Arbeit geben Hinweise darauf, dass die
tatsichlich resultierenden Erwirmungen an Elektroden in vielen Fillen als unbedenklich ein-
gestuft werden konnen. MR-Untersuchungen scheinen bei vielen Patienten mit Implantaten
moglich zu sein, insbesondere wenn der Lagerung eines Patienten im MR-Tomographen be-
sondere Aufmerksamkeit gewidmet wird. Um diese Vermutungen zu bestétigen sind aber noch
weitere Untersuchungen notwendig.
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Kapitel 7

Magnetische Gradientenfelder bei
der Magnetresonanztomographie

7.1 Einfithrung

7.1.1 Gradientenfelder und Bildgebung

Zusétzlich zum statischen magnetischen Feld und dem Hochfrequenzfeld werden bei der MR-
Tomographie noch magnetische Gradientenfelder wihrend einer MR-Sequenz geschaltet. Diese
Felder dienen dazu, dem Resonanzsignal aus dem Patientenkorper eine eindeutige Ortsinfor-
mation hinzuzuftigen. Dazu werden drei Gradientenspulensysteme verwendet, deren Felder das
statische Magnetfeld, welches hier in z-Richtung orientiert ist, tiberlagern und so entlang der
drei Raumrichtungen @, y und z unterschiedliche statische Magnetfeldstirken erzeugen. Typische
Werte fiir die Gradientenfeldstéirken liegen im Bereich von 5 mT/m bis 40 mT/m.

Die Selektion einer Schicht im Patientenkdrper wird mit dem z-Gradienten durchgefiihrt!. Der
z-Gradient G, = 66% wird wihrend der HF-Anregung geschaltet und sorgt dafiir, dass in jeder
Ebene in z-Richtung das statische Magnetfeld eine andere Stdrke hat und damit die Prizessions-
frequenz der Spins verschieden ist:

0.
9z

w(z) =7 (Bo+G.-2) =7 (Bo+ (7.1)

Wird ein Feldgradient in z-Richtung geschaltet, so werden durch die HF-Anregung nur die Spins
ausgelenkt, die die passende Prizessionsfrequenz besitzen. Die Steilheit des z-Gradienten und
die Bandbreite des HF-Pulses legen dabei die Dicke der resonanten Schicht fest.

Der y-Gradient G = %]ff dient zur Kodierung der Phaseninformation und wird zwischen dem
anregenden HF-Puls und dem Auslesen der Antennensignale geschaltet. Ist der y-Gradient aus-
geschaltet, so prézedieren alle Spins in Phase. Wird der y-Gradient eingeschaltet, so prizedieren

!Die Wahl der Raumrichtungen erfolgt hier den gingigen Konventionen entsprechend. Die Raumrichtungen
koénnen aber auch anders benannt werden.
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die Spins entlang des Phasenkodiergradienten unterschiedlich schnell. Durch die unterschiedli-
chen Phasenverschiebungen der Spins kann so die y-Koordinate kodiert werden. Der Phasen-
drehwinkel ¢, ist abhéingig von der Dauer T} des y-Gradienten (DOSSEL, 2000):

ep(y) =—7-Gy-y-Ty. (7.2)

Der z-Gradient Gy = aajiz dient zur Kodierung der Frequenzinformation und wird wahrend
des Auslesens der Antennensignale geschaltet. Dieser Gradient fiihrt zu einer Variation des
Magnetfeldes in z-Richtung und damit zu unterschiedlichen Prizessionsfrequenzen der Spins

entlang der Frequenzkodierrichtung:

(@) =7+ (Bo+ G x) =7+ (Bu+ 5 2) (7.3)

Es muss jedoch beriicksichtigt werden, dass fiir die Bildgebung nur die lokale Anderung des
statischen Magnetfeldes durch die Komponente 9B, der einzelnen Gradienten wichtig ist, die
Spulensysteme aber auch zusétzliche Magnetfeldkomponenten 0B, und 0B, erzeugen. Diese
Komponenten der Gradienten werden nicht flir die Bildgebung genutzt, induzieren aber trotz-
dem Stréome im Korper des Patienten. Daher miissen auch diese Komponenten bei einer Be-
trachtung der Auswirkungen der magnetischen Gradientenfelder bei der MR-Tomographie mit
berticksichtigt werden. So ergibt sich flir den magnetischen Feldgradienten G ein Tensor mit
neun Komponenten:

0By 0Bx 0B

vy Y7

Oz Oy Oz G§ Gx G;

_ | eB, oB, 0B, | _ x Y
G=| 5 %9 2 |=|6 & & |- (7.4)

oB, 0B, OB, Gy GT G

oz oy 0z

Abbildung 7.1 zeigt den schematischen Aufbau eines x- und eines z-Gradientensystems mit
den jeweils erzeugten Feldgradienten. Das x- und das y-Gradientensystem werden in dieser
Abbildung mittels vier Sattelspulen aufgebaut, die die Gradientenstérke B, in - und y-Richtung
beeinflussen. Der z-Gradient wird durch zwei kreisférmige parallele Spulen erzeugt, die senkrecht
zur z-Achse angeordnet sind. Weitere Informationen iiber den Aufbau und die Schaltung der
Gradientenfelder finden sich bei DOSSEL (2000), MORNEBURG (1995) und CHEN UND HoOULT
(1989).

7.1.2 Gefahren durch magnetische Gradientenfelder

Moderne Bildgebungsverfahren erfordern starke Gradientenfelder, die sehr schnell an- und ab-
geschaltet werden kénnen. Die Rampenzeiten beim An- und Abschalten eines Gradienten liegen
heutzutage im Bereich von 1 ms oder sogar darunter (DOSSEL, 2000). Innerhalb dieser Zeit
erreicht der Gradient seine volle Stirke und bleibt je nach Pulssequenz fiir einge Millisekunden
stehen und fillt danach wieder ab. Wihrend der An- und Abstiegszeiten der Gradientenfelder
werden im Korper des Patienten Strome induziert, da sich nur zu diesen Zeitpunkten der Fluss
der magnetischen Induktion B durch den Korper dndert und dann nach dem Induktionsgesetz,
welches sich in Gleichung (2.1) wiederfindet, ein elektrisches Wirbelfeld und damit Stréme im
Korper des Patienten induziert.
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Abbildung 7.1: Beispiel fiir mégliche Gradientenspulenformen zur Erzeugung einer zusatzlichen orts-
abhangigen Magnetfeldkomponente, die das statische Grundfeld By iiberlagert. Der x-Gradient in
Bild (a) wird hier von vier Sattelspulen erzeugt, die eine zusatzliche Magnetfeldkomponente B,(x)
bewirken, die entlang der x-Achse ihre Starke andert. Der y-Gradient wird ebenfalls mit einem Sat-
telspulensystem erzeugt, welches einem um 90° um die z-Achse rotierten x-Gradientenspulensystem
entspricht. Der z-Gradient in Bild (b) wird durch zwei kreisformige Spulen erzeugt. In beiden Abbil-
dungen ist die jeweilige Stromflussrichtung durch die Spulen mit hellblauen Pfeilen markiert.

Der Effekt dieser induzierten Stréme ist mafigeblich von dem Frequenzgehalt des Gradientenpul-
ses abhingig. Bei Rampenanstiegs- und Rampenabfallszeiten im Bereich unter einer Millisekunde
und Repetitionszeiten von einigen Millisekunden enthalten die Gradientenpulse oft Gleichanteile
und Frequenzen bis in den Kilohertzbereich. In diesem Frequenzbereich muss in erster Linie mit
der Stimulation von Muskel- und Nervengewebe gerechnet werden. Die durch die Gradienten
verursachten Energieverluste im Gewebe sind aufgrund der niedrigen Frequenzen sehr gering
und verursachen keine relevante Erwirmung. In Abschnitt 4.2.2 werden die physiologischen
Hintergriinde der Muskel- und Nervenstimulation ausfiihrlich beschrieben.

Die Stimulation von oberflichlicher Muskulatur scheint auf den ersten Blick nicht weiter gefihr-
lich zu sein. Dennoch kénnen dabei Bewegungsartefakte im MR-Bild durch die unerwiinschte
Bewegung des Patienten verursacht werden. Ein gréfleres Problem ist aber, dass solche Stimula-
tionen fiir den Patienten &uBlerst schmerzhaft sein kénnen. In der Literatur finden sich Berichte
uber die experimentelle Untersuchung von Auswirkungen verschiedener Gradientenpulsdauern,
Spulenkonfigurationen und Feldstirken an freiwilligen Testpersonen z. B. bei NYENHUIS ET AL.
(1999).

Neben der mitunter schmerzhaften Stimulation von Skelettmuskulatur kénnen Gradientenfelder
bei entsprechender Stirke auch tieferliegende Strukturen wie z. B. den Herzmuskel erreichen
und im unglinstigsten Fall durch eine unerwiinschte Stimulation der Herzmuskulatur zum Kam-
merflimmern und damit zum Tod des Patienten fithren. Auch wenn es heute technisch moglich
ist, immer schnellere und stirkere Gradientenspulensysteme zu entwickeln, muss in jedem Fall
sichergestellt werden, dass wahrend einer MR-Sequenz die Sicherheitsgrenzwerte eingehalten
werden (ICNIRP, 1998). In Abschnitt 4.3.2 werden die grundlegenden Basisgrenzwerte fiir die
maximal zuldssigen Stromdichten im Korper angegeben, die bei einer Frequenz von 1 kHz fiir
beruflich exponierte Personen 10 mA/m? nicht iiberschreiten diirfen.
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Anhand von experimentellen Studien und theoretischen Uberlegungen versuchen verschiedene
Autoren, Zusammenhénge zwischen Gradientenfeldstirke, Pulsdauer und -frequenz zu erarbei-
ten, um die Gefdhrdung von Patienten a priori abschétzen und zulédssige Grenzwerte fir Gradien-
tensysteme ableiten zu kénnen (IRNICH & SCHMITT, 1995; NYENHUIS ET AL., 1997; BOWTELL
& BOWLEY, 2000). Dariiber hinaus ist es méglich mit Hilfe der numerischen Feldtheorie Gra-
dientenpulsformen zu untersuchen. Allerdings finden sich dariiber bisher nur wenig Studien in
der Literatur. In einer Arbeit von SIMUNI¢ ET AL. aus dem Jahr 1996 wird eine einfachen
Gradientenpulsform mit einem grob aufgelosten Torsomodell untersucht. Diese Methode und
die in dieser Arbeit daraus entwickelten Erweiterungen und numerischen Verfahren werden im
folgenden vorgestellt.

7.1.3 Numerische Berechnung von Gradientenpulsen

Die numerische Berechnung der durch Gradientenpulse induzierten Stréme ist zunfchst nicht
einfach im Frequenzbereich moglich, da die anregenden Gradientenpulsformen nicht sinusférmig
sind. Die Méglichkeit, das Problem im Zeitbereich zu betrachten, scheitert in der Regel an dem
restriktiven Stabilitatskriterium fiir die maximal zul&dssige stabile Zeitschrittweite fiir die Itera-
tion im Zeitbereich nach Gleichung (2.59). Bei Gradientenpulsdauern im Millisekundenbereich
ergeben sich bei maximal zulédssigen Zeitschritten von einigen Pikosekunden mehrere Millionen
Zeitschritte (vgl. mit Tabelle 2.1), was in einer Rechenzeit von mehreren Monaten resultieren
wiirde.

Da auch diese Moglichkeit ausscheidet, muss die Pulsform in eine Fourierreihe entwickelt wer-
den. Anhand der Reihenentwicklung ist es moglich, die Pulsform mit einer Auswahl an Harmo-
nischen darzustellen und jede einzelne Frequenz als sinusférmige Anregung mit dem Frequenz-
bereichsléser W3 von MAFIA zu berechnen. In der Arbeit von SIMUNIC ET AL. (1996A) wurde
dieser Ansatz zum ersten Mal umgesetzt. Allerdings wurde in dieser Arbeit keine explizite Fou-
rierzerlegung der Gradientenpulsform und Fourierkoeffizienten durchgefiihrt, sondern es wurden
nur die ber{icksichtigten Frequenzen der Harmonischen angegeben. Dartiber hinaus enthélt diese
Studie nur die Betrachtung einer einfachen trapezférmigen Gradientenpulsform.

In den folgenden Abschnitten wird daher die Fourierzerlegung von Gradientenpulsen ausfiihr-
lich beschrieben. Zuné&chst wird eine Zerlegung fiir den einfachen trapezférmigen Gradientenpuls
angegeben und danach eine Zerlegung fiir einen doppelten trapezformigen Gradientenpuls. Mit
beiden Pulsformen werden Simulationsrechnungen mit einem hochaufgelsten numerischen Mo-
dell eines menschlichen Oberkdrpers durchgefithrt und bei jeder berticksichtigten harmonischen
Frequenz der Pulsformen die maximale Stromdichte im Herzmuskel erfasst. Als Parameter fiir
die Gradientenpulsformen dienen zum einen die Angaben aus SIMUNIC ET AL. (1996A), zum
anderen werden Werte in der Gréflenordnung aktueller klinischer Sequenzen verwendet. Aus den
Einzelrechnungen werden die maximalen Summenstromdichten berechnet und mit den zuléssi-
gen Grenzwerten verglichen. Eine Diskussion tiber Grenzen und Méglichkeiten dieses Verfahrens
schliefit das Kapitel ab.

Teile dieser u. a. als Studienarbeit am Institut fiir Biomedizinische Technik der Universitit
Karlsruhe (TH) durchgefiihrten Arbeit wurden bereits publiziert (RICK ET AL., 2002).
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7.2 Fourierreihenentwicklung von Gradientenpulsen

Jede periodische Funktion in der Zeit mit der Periodendauer 7" kann in eine Fourierreihe ent-
wickelt werden (BRONSTEIN & SEMENDJAEV, 1991). Mit dem Zusammenhang w = 2—” ergibt
sich folgende Reihenentwicklung:

0 o0
= ?-FZ an cos (nwt) + by, sin (nwt)) . (7.5)

n=1

Die Schwierigkeit bei der Fourierreihenentwicklung ist die Bestimmung der Fourierkoeffizienten
ap, a, und b, bei deren Berechnung Produktintegrale aus der darzustellenden Funktion f(¢)
mit Sinus- oder Kosinusfunktionen zu ldsen sind.

Oft geben sich durch die Symmetrieeigenschaften der Ausgangsfunktion f(t) Vereinfachungen
beztiglich der Fourierkoeflizienten. So verschwinden bei geraden Funktionen die Koeflizienten
b, und bei ungeraden Funktionen die Koeflizienten ag und a,. Der Koeflizient ag stellt den
Gleichanteil der Ausgangsfunktion f(¢) dar. Der Gleichanteil einer Pulsform trigt nicht zu der
Entstehung von Wirbelstréomen bei.

Die harmonischen Frequenzen n-w =n - 27 /T ergeben sich aus der Gesamtdauer 7" der Gradi-
entenpulsform. Eine weiterfiihrende Darstellung der Grundlagen der Fourierreihenentwicklung
findet sich in Anhang A.3.

Zur ndherungsweisen Darstellung einer Funktion reicht es im allgemeinen aus, nur einige wenige
Terme der Reihenentwicklung (7.5) zu berticksichtigen. Dabei ist es zweckmifig, diejenigen
Terme auszuwihlen, die iiber die betragsméaBig grofiten Fourierkoeffizienten a, und b, verfligen,
da diese als Gewichtsfaktoren fiir die einzelnen Reihenterme fungieren und die Darstellung der
approximierten Funktion f(t) am meisten beeinflussen.

7.2.1 Fourierreihe einer einfachen trapezformigen Gradientenpulsform

Abbildung 7.2a zeigt eine einfache trapezférmige Gradientenpulsform, wie sie in vielen MR-
Sequenzen Verwendung findet. Um die Fourierreihenentwicklung zu vereinfachen, wurde die
Pulsform achsensymmetrisch zur y-Achse ausgerichtet. Die Pulsform hat eine Rampenanstiegs-
und Rampenabfallszeit von b — a. Die Maximalamplitude betrigt B bei einer Periodendauer
T. Um diese Gradientenpulsform in eine Fourierreihe entwickeln zu kénnen, ist es zunéchst
notwendig, die Pulsform durch eine stiickweise definierte Funktion f(t) darzustellen:

( 0 -L <t< b
2 (t+b) —b <t< —a
ft) =4 B —a <t< a (7.6)
Lo (t—b) a <t< b
\ 0 b <t< L

Ausgehend von dieser stiickweise definierten Funktion f(t) kénnen die Fourierkoeffizienten ag
und a, berechnet werden. Die Koeffizienten b, sind gleich Null, da die Funktion f(¢) gerade
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Abbildung 7.2: Beispiel fiir eine Fourierrekonstruktion eines einfachen trapezférmigen MR-
Gradientenpulses. Die Pulsform wurde in der schematischen Zeichnung (a) so angeordnet, dass sie
symmetrisch um t = 0 s ist, was die Fourierreihenentwicklung vereinfacht. Die charakteristischen
GroBen, wie die Zeitpunkte fiir den beginnenden Rampenabfall a = 0,4 ms und das Rampenende
b = 0,7 ms, die Gesamtpulsdauer T = 2,8 ms, sowie die Stirke des Gradientpulses B = 10 mT/m
sind in der Zeichnung mit angegeben. Die Steilheit der Rampe betragt ca. 33,3 mT/(m-ms). Bild (b)
zeigt die Rekonstruktion der Rampenfunktion mit Hilfe einer Fourierreihentwicklung bis zur fiinften
Ordnung.

ist. Der komplette Rechenweg befindet sich in Anhang A.3.1. Fiir die Fourierkoeffizienten ergibt

sich:
2B-(b+a)
ag = ————=
0 T ’
B-T cos (nwa) — cos (nwb)
ap = . .
(b—a)-n? n?

Daraus ergibt sich als Reihenentwicklung fiir die einfache trapezférmige Gradientenpulsform:

ft) =

B:(b+a) B-T i (cos (nwa) — cos (nwb)

T + b—a) 2 - cos (nwt)) . (7.9)

2
n=1 n
Abbildung 7.2b zeigt die Fourierreihenentwicklung eines einfachen trapezférmigen Gradienten-
pulses nach Gleichung (7.9) mit einer Periodendauer von T' = 2,8 ms, einer maximalen Gradien-
tenstirke von B = 10 mT/m und den Zeitparametern a = 0,4 ms und b = 6,0 ms. Die Steilheit
der Rampe betrigt ca. 33,3 mT/(m-ms). In der Darstellung wurden alle Harmonischen bis zur

fiinften Ordnung inklusive berticksichtigt.

7.2.2 Fourierreihe einer doppelten trapezformigen Gradientenpulsform

Abbildung 7.3a zeigt eine doppelte trapezférmige Gradientenpulsform, die z. B. bei Gradienten-
echo Sequenzen verwendet wird (DOSSEL, 2000). Bei einer Turbo Spin Echo Sequenz kommen

154



7.2 Fourierreihenentwicklung von Gradientenpulsen

20.0

B l_E 15.0 /\/\
E |
= \
g 5.0 \
:E 0.0
5, \

0a b c T2t 3 \
._GEJ -10.0 \ /
S -15.0
© -20.0 \/\/
-4.0 -2.0 0.0 2.0 4.0
Zeit in ms

(a) (b)

Abbildung 7.3: Beispiel flir eine Fourierrekonstruktion eines doppelten trapezférmigen MR-
Gradientenpulses. Die Pulsform wurde in der schematischen Zeichnung (a) so angeordnet, dass sie
symmetrisch zum Ursprung ist, was die Fourierreihenentwicklung vereinfacht. Die charakteristischen
GroBen, wie die Zeitpunkte fiir das Ende des Rampenanstieges a = 0,1 ms, der Beginn des Rampen-
abfalls b = 1,5 ms und das Ende des Rampenabfalls c = 1,6 ms, die Gesamtpulsdauer T = 9,0 ms,
sowie die Starke des Gradientpulses B = 16 mT/m sind in der Zeichnung mit angegeben. Die ma-
ximale Steilheit der Rampe zum Zeitpunkt t = 0 s betrdgt 160,0 mT/(m-ms). Bild (b) zeigt die
Rekonstruktion der Pulsform mit Hilfe einer Fourierreihenentwicklung bis zur elften Ordnung.

auch doppelte trapezférmige Pulsformen vor, allerdings ist bei diesem Sequenztyp die zweite
Hélfte der Pulsform, die zur Schichtselektion verwendet wird, nur halb so grofi. Dies &ndert
aber nichts am Rampenanstieg, dessen Steilheit entscheidend fiir die im menschlichen Korper
induzierten Stréme ist.

Um die Fourierreihenentwicklung zu vereinfachen, wurde die Pulsform punktsymmetrisch zum
Ursprung ausgerichtet. Die Pulsform hat zwei unterschiedliche Rampenanstiegs- und Rampen-
abfallszeiten von a und ¢ — b. Die Maximalamplitude betrégt B bei einer Periodendauer 7. Um
diese Gradientenform durch eine Fourierreihe darstellen zu konnen, ist es zunichst notwendig,
auch diese Pulsform durch eine stiickweise definierte Funktion f(t¢) darzustellen:

( 0 -T <t< —c
2 (t+e) —c <t< b
—B -b <t< -—a
fy)=¢ L) —a <t< a (7.10)
B <t< b
% (t—rc) <t< ¢
\ 0 c <t< L

Ausgehend von dieser stiickweise definierten Funktion f(¢) konnen die Fourierkoeffizienten b,
berechnet werden. Die Koeffizienten ag und a, sind gleich Null, da die Funktion f(¢) in diesem
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Abbildung 7.4: Positionierung des hochauf-
geldsten Oberkdrpermodells im Gradientenspulen-
system mit einem Radius von r = 0,4 m. Die Po-
sition des Korpermodells wurde entsprechend der
Lage wahrend einer MR-Untersuchung des Kopf-
es gewihlt. Bei dieser Positionierung kommt das
Herz des Kdrpermodells genau in der Mitte einer
z-Gradientenspule zu liegen, was besonders hohe
Wirbelstromdichten in der Herzgegend erzeugt.

Fall ungerade ist. Der komplette Rechenweg befindet sich in Anhang A.3.2. Fiir die Fourierko-
effizienten ergibt sich nach einigen Zwischenrechnungen:

B-T 1 (sin (nwe) — sin (nwb) I sin (m"“)) _

b—c a

Daraus ergibt sich als Reihenentwicklung fiir die doppelte trapezférmige Gradientenpulsform:

£(0) = B7T-2T g Ksm (nwc) — sin (nwb) N sin (nwa)) i (nwt)} ‘ (7.12)

n?-(b—c) n?-a

Abbildung 7.3b zeigt die Fourierreihenentwicklung eines einfachen trapezformigen Gradienten-
pulses nach Gleichung (7.12) mit einer Periodendauer von T' = 9,0 ms, einer maximalen Gradien-
tenstirke von B = 16 mT/m und den Zeitparametern a = 0,1 ms, b= 1,5 ms und ¢ = 1,6 ms.
Die maximale Steilheit der Rampe zum Zeitpunkt t = 0 s betrigt 160,0 mT/(m-ms)und ist
damit um den Faktor 4,8 griofler als die Steilheit der in Abbildung 7.2 gezeigten einfachen
trapezférmigen Rampenfunktion. In der Darstellung wurden alle Harmonischen bis zur elften
Ordnung inklusive berticksichtigt.

7.3 Numerische Modellierung

7.3.1 Aufbau des numerischen Modells

Abbildung 7.4 zeigt das numerische Modell, mit dem die Entstehung von Wirbelstrémen im
menschlichen Ké&rper durch geschaltete MR-Gradientenfelder berechnet wurde. Das hochauf-
geloste Modell eines Oberkoérpers wurde mit einem Gradientenspulensystem bestehend aus Sat-
telspulensystemen fiir den - und den y-Gradienten und einem Spulenpaar fiir den z-Gradienten
umgeben.

Diese spezielle Kombination der Gradientenspulen wird auch ,,Golay“-Gradientensystem ge-
nannt (TURNER, 1993). Abhingig von einem inneren Radius 7 =0,4 m des Spulensystems
ergibt sich in dieser Konfiguration ein Abstand von ds = 0,78 -7 = 0,312 m der Sattelspulen,
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jede mit einer Lange von [ = 2,13 -r = 0,852 m. Der Abstand der z-Gradientenspulen betrigt
bei diesem Spulensystem d, =1,73-r = 0,692 m.

Das Spulensystem wurde so beziiglich dem Kérpermodell positioniert, dass der Kopf des Modells
im Zentrum des Gradientenspulensystems zu liegen kam, was eine MR-Untersuchung des Kopfes
wiedergibt. Als Folge davon befindet sich die Herzregion des Kérpermodells im Zentrum einer
der z-Gradientenspulen.

Das numerische Modell besteht aus tiber 1000000 Voxeln bei einer Lange von 3 m in z- und y-
Richtung und 4 m in z-Richtung. Um die Stréme in der Herzgegend genauer erfassen zu kénnen
wurde die Gitterschrittweite von 25 mm bis auf 5 mm in der Herzgegend in jeder Raumrichtung
reduziert. Die dielektrischen Gewebeparameter wurden mit Hilfe von Gleichung (3.15) nach
GABRIEL ET AL. (1996¢) fiir jede berechnete Frequenz bestimmt.

7.3.2 Durchfithrung der numerischen Modellierung

Ausgehend von der Periodendauer 7" wurden zunéchst die Frequenzen n- f, = n/T =n-w/(27)
der Harmonischen bestimmt. Danach wurde bei den jeweiligen Frequenzen mit dem Frequenz-
bereichsléser W3 des Programmpaketes MAFIA mit dem PSBCGR-Algorithmus unter Verwen-
dung der Curl-Curl-Eigenwertgleichung (siehe Abschnitt 2.3) Berechnungen mit einem leeren
Gradientenspulensystem durchgefiihrt, um die notwendigen Stromstérken in den Spulensyste-
men zur Erzeugung der gewiinschten Gradientenstérke zu ermitteln. Bei dem hier betrachte-
ten Golay-Gradientensystem besteht zwischen Gradientenstédrke und Stromstérke in den Gra-
dientenspulen ein linearer Zusammenhang. Diese Berechnungen wurden fiir das z-, y- und z-
Gradientensystem separat ausgefiihrt.

Abbildung 7.5 zeigt den Verlauf der z-Komponente der magnetischen Flussdichte der z-
Gradientenspule entlang der z-Achse bei einer Stromstérke von 3200 A. Im Zentrum des Spu-
lensystems entsteht dadurch eine Feldgradient von 16 mT/m.

Mit den so ermittelten Stromstirkewerten wurde dann bei jeder Frequenz das elektromagnetische
Feldproblem im Frequenzbereich gelost. Es zeigte sich, dass bei den Frequenzen im Bereich
bis zu einigen Kilohertz schon nach 2000 Iterationsschritten eine sehr gute Konvergenz der
Losung beobachtet werden konnte. Aus den elektrischen Feldern wurden dann die Stromdichten
berechnet und die maximalen Stromdichten im Herzmuskel erfasst.
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a b c T B I
Gradient | inms inms inms inms inmT/m inA
G, 5,9 6,0 - 18,3 4,0 800
Gy 1,2 1,3 - 9,1 8,0 1600
G. 0,1 1,5 1,6 9,0 16,0 3200
Gy 0,4 0,7 - 2,8 10,0 2000

Tabelle 7.1: Parameter der vier berechneten Gradientenpulsformen. Die Gradientenpulsformen fiir

die Gradienten Gy, Gy und G, entsprechen denen einer klinischen Gradientenecho-Sequenz. Die Gradi-

enten Gy und Gy sind dabei einfache trapezférmige Gradientenpulse. Der G,-Gradient ist ein doppelter

trapezformiger Gradientenpuls. Der G,y,-Gradient entspricht der in der Arbeit von SIMUNIC ET AL.
(19964) verwendeten Pulsform und wurde hier zu Vergleichszwecken verwendet.

7.3.3 Parameter der modellierten Gradientenpulsformen

Im Rahmen dieser Arbeit wurden insgesamt sechs Gradientenpulse untersucht. Zunichst wurde
der von SIMUNIC ET AL. (19964) verwendete einfache trapezférmige Gradientenpuls Gpy> mit
den z-, y- und z-Gradientenspulen berechnet, um die Ergebnisse mit der Arbeit von SIMUNIC
ET AL. vergleichen zu kénnen. Dabei wurde in Ubereinstimmung mit den Angaben von SIMUNIC
ET AL. nur die erste, dritte, fiinfte und siebte Harmonische berticksichtigt.

Danach wurde ein Sequenzprotokoll einer klinischen Gradientenecho-Sequenz (GRE) ausgewer-
tet und die zugehorigen Gradientenpulse berechnet. Der z- und der y-Gradient entsprechen
dabei dem einfachen trapezformigen Gradientenpuls. Zur Darstellung dieser Pulsform wurden
die ersten fiinf Harmonischen verwendet, was die Pulsform sehr gut wiedergab (vgl. mit Abbil-
dung 7.2). Der z-Gradient besitzt die Form des doppelten Gradientenpulses. Zur Darstellung
des z-Gradienten wurden die ersten elf Harmonischen beriicksichtigt.

Die Zeitparameter, Gradientenstirken sowie die dazu notwendigen Stromstéirken sind in Tabelle
7.1 aufgefiihrt. Die Gewichtsfaktoren g; fiir die einzelnen Harmonischen der Reihenentwicklung
sind in Tabelle 7.2 angegeben. Diese Faktoren geben den prozentualen Anteil jeder berticksich-
tigten Harmonischen in der gesamten Reihenentwicklung an. Der Gewichtsfaktor g; der i-ten
Harmonischen ergibt sich folgendermaflen aus den Koeffizienten a,, und b,,:

a; + b;
gi = n .
lao| + iy (Jail + b))

Je nach Symmetrie der betrachteten Gradientenpulsform kénnen bei dieser Gleichung auch Ter-
me a; oder b; wegfallen.

(7.13)

Anders ausgedriickt bedeutet dies, dass die Koeffizienten einer Harmonischen durch die Betrags-
summe aller berticksichtigten Fourierkoeflizienten geteilt werden miissen. So ergeben sich auch
negative Gewichtsfaktoren. Letzten Endes bedeutet ein negativer Gewichtsfaktor bei der Fou-
rierreihenzerlegung lediglich eine Phasenverschiebung der jeweiligen Sinus- oder Kosinusfunktion
der Harmonischen Komponente.

Der Gleichanteil ag, der keinen Beitrag zur Stromdichte im Korper des Patienten liefert, wird
in den Gewichtsfaktoren g; in Gleichung (7.13) ebenfalls berticksichtigt. Der Gewichtsfaktor gg
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Gradient G, Gy G. Gy
Grundfrequenz fu 55 Hz 110 Hz 111 Hz 357 Hz

1. harmonische 1./, | 236% 298% 176 % 394 %
2. harmonische 2-fn |-10,7% 194 % 258 % -

3. harmonische 3-/m | -14% T0% 220% -63%
4. harmonische 4-fn | 63% -29% 113 % - %
5. harmonische 5.-Mm | -3.8% -7T8% 23% -06%
6. harmonische 6 - fu - - 0,0 % -

7. harmonische 7 fn - - 33%  13%
8. harmonische 8 fu - - 6,9 % -

9. harmonische 9- fu - - 6,9 % -
10. harmonische 10 - f} - - 3,6 % -
11. harmonische 11 - f}, - - 0,4 % -
Gleichanteil 542 % 338% 0,0% 525%

Tabelle 7.2: Gewichtsfaktoren fiir die Grundfrequenz und die einzelnen Harmonischen bei der Fou-

rierreihenzerlegung der Gradientenpulsformen. Bei der Darstellung des G- und Gy-Gradienten wurde

mit den ersten fiinf Harmonischen eine sehr gute Wiedergabe der Pulsform erreicht. Bei der Darstel-

lung des G,-Gradienten war es notwendig die ersten elf Harmonischen zu beriicksichtigen. Analog

zur Arbeit von SIMUNIC BT AL. (1996A) wurden fiir die Darstellung des Gyyz-Gradienten nur die

erste, dritte, fiinfte und siebte Harmonische verwendet. Die Grundfrequenz wird durch die jeweilige
Pulsdauer T bestimmt.

des Gleichanteils ergibt sich &hnlich zu Gleichung (7.13), indem der Koeffizient ag durch die
Betragssumme aller Koeffizienten dividiert wird.

Insgesamt mussten so fiir den Vergleich mit der Arbeit von SIMUNIC ET AL. fiir alle drei Feldgra-
dienten 3 -5 = 15 Einzelberechnungen durchgefithrt werden und fiir die Berechnung der GRE-
Pulsformen waren insgesamt 20 Berechnungen notwendig, je 5 fiir den z- und y-Gradienten und
10 fiir den z-Gradienten? .

7.4 Ergebnisse der numerischen Simulation

7.4.1 Auswertung der numerischen Ergebnisse

Bei der Auswertung der numerischen Ergebnisse muss analog zur Zerlegung der Pulsform in
eine Fourierreihe die resultierende Stromdichte aus den Ergebnissen jeder einzelnen Berechnung
rekombiniert werden. Dabei wurde zunéchst bei jeder einzelnen Berechnung der Absolutbetrag
der Stromdichte im Kérpermodell bestimmt und im Herzmuskel der Punkt mit der maximalen
Stromdichte gesucht. Die so ermittelten maximalen Stromdichten jeder einzelnen numerischen

*Fiir den z-Gradienten wurden insgesamt elf Harmonische beriicksichtigt. Der Gewichtsfaktor fiir die sechste

Harmonische ergab sich aber zu Null.
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Berechnung befinden sich fiir die Vergleichsstudie mit dem einfachen trapezférmigen Gradien-
tenpuls in Tabelle 7.3 und fiir die GRE-Gradientenpulse in Tabelle 7.4.

Mit Hilfe der Gewichtsfaktoren g; kann aus den einzelnen Maximalwerten der Stromdichte ei-
ne obere Grenze flir die maximal zu erwartende Stromdichte an den jeweiligen beobachteten
Punkten im Koérpermodell berechnet werden:

n

Jlnax,abs = Z (lgz| : Jmax,i) . (714)
1=1

Bei der Berechnung des zeitlichen Verlaufs der Gesamtstromdichte miissen die Einzelergeb-
nisse der Maximalwerte der Stromdichte gem&fl ihrer Gewichtsfaktoren oder Fourierkoeffizi-
enten gewichtet addiert werden. Dabei ist nach GRIFFITHS (2001) eine Phasenverschiebung
von ¢;/; = m/4 zu beriicksichtigen, da die Wirbelstrome den anregenden Gradientenfeldern
nachfolgen. Dies ist auch ersichtlich aus dem Induktionsgesetz in komplexer Notation nach Glei-
chung (2.28). Aus der Fourierreihenentwicklung 7.5 folgt automatisch die Gleichung fiir die
Zeitabhéngigkeit der Stromdichte an den beobachteten Punkten im Kérpermodell:

Fumlt) = i: (ai Imax.i - cos (i-w - t+ 9017)) N i: (bj “Jmax,j-sin (j-w -t + ng)) . (7.15)
P 2 k=0 lak| 2= l01]

7=1
Je nach Symmetrie der betrachteten Gradientenpulsform kénnen bei Gleichung (7.15) auch
Terme wegfallen, da sich dann die Koeflizienten a; oder b; zu Null ergeben. Dies ist z. B. bei
den beiden vorgestellten Gradientenpulsformen der Fall. Bei der geraden Gradientenpulsform
fallen die Terme mit den Koeffizienten b; weg und bei der ungeraden Pulsform die Terme mit
den Koeffizienten a;. Die einzelnen Ergebnisse fiir Jy.x aus Tabelle 7.3 oder 7.4 miissen dann
den entsprechenden Summentermen zugeordnet werden.

Die mit Gleichung (7.14) berechnete Obergrenze kann in einigen Féllen den tatsichlich maxi-
mal auftretenden Wert der Stromdichte deutlich tiberschitzen, da bei der Rekombination des
zeitlichen Verlaufs der Stromdichte nach Gleichung (7.15) bei Funktionen mit nicht verschwin-
denden Koeffizienten a, durch die Phasenverschiebung ¢; = /4 die Kosinusterme in der Rei-
henentwicklung zu Sinusfunktionen umgewandelt werden und damit die Funktionsmaxima der
einzelnen harmonischen Terme nicht mehr auf gleiche Zeitpunkte fallen. Dadurch ist eine ein-
fache gewichtete Addition nach Gleichung (7.14) der Einzelmaximalwerte zur Bestimmung der
Maximalamplitude nicht méglich.

Im Falle einer ungeraden Funktion verschwinden alle Fourierkoeffizienten bis auf die b,,. Glei-
chung (7.15) wird bei Berticksichtigung der Phasenverschiebung ¢; = m/4 zu einer reinen Kosi-
nusreihe, deren einzelne Maxima der harmonischen Terme zusammenfallen. Aber auch in diesem
Fall kann Gleichung (7.14) die tatséchliche Maximalamplitude {iberschitzen, genau dann wenn
einige Koeffizienten b, negativ sind. Es empfiehlt sich daher in jedem Fall Gleichung (7.15)
auszuwerten und daraus die tatséchlichen Funktionsmaxima zu bestimmen.

7.4.2 Maximale Stromdichte im Koérpermodell

Aus den Werten in Tabelle 7.3 und 7.4 kénnen mit Hilfe von Gleichung (7.14) die oberen Grenzen
fiir die maximalen Stromdichten an den beobachteten Punkten des Korpermodells berechnet
werden.
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7.4 Ergebnisse der numerischen Simulation

Harmonische G, Gy G, Simunié
1. 0,129 A/m? 0,210 A/m? 0,252 A/m? -
3. 0,408 A/m? 0,537 A/m? 0,729 A/m? -
5. 0,694 A/m? 0,798 A/m? 1,189 A/m? -
7. 0,986 A/m? 1,052 A/m? 2,048 A/m? -
Maximal | 0,093 A/m? 0,134 A/m? 0,178 A/m? 0,09 A/m?
Tatséchlich | 0,071 A/m? 0,106 A/m? 0,137 A/m? -

Tabelle 7.3: Maximalwerte des Absolutbetrages der Stromdichte im Herzmuskel bei den berechne-
ten Harmonischen des einfachen trapezférmigen Gradientenpulses fiir jedes Gradientensystem zum
Vergleich mit den Ergebnissen von SIMUNIC ET AL. (19964). Die Werte fiir die maximale Strom-
dichte ergeben sich nach gewichteter Addition nach Gleichung (7.14). Die tatsdchliche maximale
Stromdichte ergibt sich durch Auswertung der Zeitentwicklung nach Gleichung (7.15)

Fir den z-Gradienten ergab sich bei der einfachen trapezférmigen Pulsform eine Maximal-
amplitude von 0,093 A/m?, fiir den y-Gradienten von 0,134 A/m? und fiir den z-Gradienten
von 0,178 A/m?.

Fiir den z-Gradienten der GRE-Gradientensequenz ergaben sich Maximalamplituden der Strom-
dichte im Herzmuskel von 0,015 A/m2, fir den y-Gradienten von 0,022 A/m2 und fir den z-
Gradienten von 0,278 A/m?2.

Fiir den z-, y- und z-Gradienten ergaben sich durch Auswertung der Zeitentwicklung bei der ein-
fachen trapezférmigen Pulsform tatsfichliche Maximalamplituden von 0,071 A/m?2, 0,106 A /m?
und 0,137 A/m?2.

Fiir den x-, y- und 2- Gradienten der GRE-Gradientensequenz ergaben sich tatsichliche Maxi-
malamplituden von 0,013 A/m?, sowie von 0,018 A/m? und von 0,278 A/m?.

Wie erwartet werden die tatsdchlichen Maximalamplituden durch die gewichtete Addition
nach Gleichung (7.14) im Fall des einfachen trapezférmigen Gradientenpuls um bis zu 31 %
tiberschétzt. Beim ungeraden z-Gradientenpuls der GRE-Sequenz ergaben sich keine Abweichun-
gen zwischen den Werten der gewichteten Addition und der Auswertung der Zeitentwicklung der
Stromdichte.

Abbildung 7.6a zeigt den Absolutbetrag der Stromdichte fiir den einfachen z-Gradienten. Da-
zu wurden fiir die einzelnen Harmonischen der Rekonstruktionsfunktion (7.15) die Werte aus
Tabelle 7.3 verwendet. Es zeigt sich, dass die Stromdichte genau dann ihre maximalen Werte
einnimmt, wenn der Feldgradient ansteigt oder abfillt, d. h. sich der Fluss der magnetischen
Induktion durch den Koérper dndert.

Abbildung 7.6b zeigt den Absolutbetrag der Stromdichte fiir den doppelten z-Gradienten der
GRE-Gradientensequenz. Auch hier zeigt sich, dass die Stromdichte genau dann ihre maximalen
Werte einnimmt, wenn der Feldgradient ansteigt oder abfillt. Das Maximum der induzierten
Stromdichte wird wihrend des steilsten Anstiegs oder Abfalls, d. h. zum Zeitpunkt der gréfiten
Anderung des Feldgradienten erreicht.

Ein Vergleich der erreichten Maximalwerte beider induzierter Stromdichten in Abbildung 7.6
zeigt, dass sich bei der doppelten Gradientenpulsform eine ungefihr viermal so grofie maxima-
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Gradient Harm. Jyax,n | Gradient Harm. Jpaxn
in A/m? in A/m?

Gy 1. 0,017 G, 1. 0,069
Gy 2. 0,033 G, 2. 0,144
G 3. 0,048 G, 3. 0,219
G 4, 0,063 G, 4. 0,296
G 5. 0,080 G, 5. 0,371
Gy 1. 0,076 G, 7. 0,538
Gy 2. 0,151 G, 8. 0,615
Gy 3. 0,224 G, 9. 0,692
Gy 4. 0,298 G, 10. 0,773
Gy 5. 0,372 G, 11. 0,858
G, Max. 0,015 G, Max. 0,278
Gy Max. 0,022
Gy Tat. 0,013 Gy Tat. 0,278
Gy Tat. 0,018

Tabelle 7.4: Maximalwerte des Absolutbetrages der Stromdichte im Herzmuskel (Jmax 1) bei den
berechneten Harmonischen der Gradientenpulse der klinischen Gradientenecho Sequenz. Die Maxi-
malwerte nehmen mit steigender Harmonischer und damit steigender Frequenz zu. Die Werte fiir die
maximale Stromdichte ergeben sich nach gewichteter Addition nach Gleichung (7.14). Die tatsachli-
che maximale Stromdichte ergibt sich durch Auswertung der Zeitentwicklung nach Gleichung (7.15).

le Stromdichte als bei der trapezférmigen Gradientenpulsform ergibt. Dies korreliert mit den
unterschiedlichen Steilheiten der Gradientenrampen, die sich um den Faktor 4,8 voneinander
unterscheiden (vgl. Abschnitt 7.2.2).

Abbildung 7.7 zeigt die tatsdchliche Maximalamplitude der Stromdichte in einem frontalen
Schnitt durch das Oberkérpermodell die durch den z-Gradienten der GRE-Gradientesequenz
induziert wird.

7.4.3 Diskussion der numerischen Ergebnisse

Die numerischen Ergebnisse haben gezeigt, dass es mit Hilfe einer Fourierreihenentwicklung
moglich ist, beliebige Gradientenpulsformen zu zerlegen und die einzelnen Komponenten dann
im Frequenzbereich zu berechnen, um sie danach wieder zu rekombinieren. So kann der zeitliche
Verlauf der Stromdichte wihrend eines Gradientenpulses dargestellt werden.

Die vorgestellte numerische Methode ist ein gangbarer Weg, der allerdings mit einem hohen Zeit-
und Rechenaufwand verbunden ist, da unter Umsténden eine Vielzahl einzelner Rechnungen
durchgefiihrt und danach miteinander kombiniert werden missen. Bei einer Einschriankung der
berticksichtigten Harmonischen lédsst sich hier Zeit sparen. Aber nicht alle Gradientenpulsformen
lassen sich zufriedenstellend mit einigen wenigen Harmonischen rekonstruieren, wie der einfache
trapezformige Gradient. Insbesondere bei der doppelten Gradientenpulsform zeigte sich, dass
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Abbildung 7.6: Rekonstruktion des zeitlichen Verlaufes des Absolutbetrages der Stromdichte (griine
Linien) im Herzmuskel des x-Gradienten der einfachen Rampenfunktion (a) und des doppelten z-
Gradienten der GRE-Gradientenpulssequenz (b). Die tatsdchliche maximale Stromdichte im Herz-
muskel ergab sich zu 0,071 A/m? beim einfachen trapezfdrmigen Gradientenpuls und zu 0,278 A/m?
bei der doppelten Pulsform. Die Stromdichte im Muskelgewebe erreicht wahrend den An- und Ab-
stiegszeiten der Gradienten ihre Maximalwerte. Ist die Starke des Gradientenfeldes konstant, werden
keine Strome induziert. Die Stromdichte ergibt sich dann ndherungsweise zu Null. Zum besseren
Vergleich wurden die jeweiligen Gradientenformen mit in die Diagramme aufgenommen (diinne rote
Linien).

auch die Berticksichtigung hoherer Ordnungen notwendig war, um die Pulsform wiedergeben zu
kénnen. Die Auswahl von Harmonischen stellt sich mit als die schwierigste Aufgabe dar und
dafiir kann auch keine allgemeingiiltige Regel angegeben werden.

Ein Vergleich der hier berechneten Werte des einfachen Gradientenpulses mit den Ergebnissen
von SIMUNIC ET AL. (1996A) bestiitigt die Grofenordnung des dort berichteten Maximalwertes
von 0,09 A/m? der Stromdichte, die dort im schlimmsten Fall vom z-Gradienten im Herzen des
Korpermodells induziert wurde. In Ubereinstimmung mit der Arbeit von SIMUNIG ET AL. ergab
auch bei dieser Untersuchung stets der z-Gradient die héchsten Stromdichten im Herzmuskel
aufgrund der gewdhlten Positionierung des Herzens im Zentrum einer z-Gradientenspule. Der
tatsdchliche Maximalwert von 0,137 A/m? liegt zwar etwas iiber dem von SIMUNIG ET AL.
berichteten Maximalwert, was aber an Unterschieden bei der numerischen Modellierung oder
den verwendeten Korpermodellen liegen kann.

Die berechneten Stromdichten liegen hier in jedem Fall {iber den von der ICNIRP (1998) zu-
gelassenen maximalen Stromdichten von 10 mA /m? fiir beruflich exponierte Personen. Da nach
ICNIRP ab einer Stromdichte von 100 mA /m? mit einer Stimulation von Muskel- und Nervenge-
webe gerechnet werden muss, kénnte es in den hier diskutierten Féllen zu einer Stimulation kom-
men, da einige berechnete Werte die Stimulationsschwelle {ibersteigen. Insbesondere die durch
den doppelten z-Gradienten erzeugte Stromdichte im Herzmuskel ist als kritisch zu betrachten
und erfordert daher weitergehende Untersuchungen. Es gilt die Frage zu kléren, ob die hohe
Stromdichte im numerischen Modell durch die Struktur des einfachen Golay-Gradientensystems
bedingt ist und bei realititsgetreuer Modellierung einer z-Gradientenspule verschwindet.
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Abbildung 7.7: Maximale Stromdichte im Herz-
muskel des Oberkorpermodells. Beim Schalten
des z-Gradienten erreicht die Stromdichte im
Herzen (weiBer Kasten) einen Maximalwert von
0,278 A/m?2. Im Kopfbereich im Zentrum des kom-
pletten Gradientenspulensystems werden deutlich
geringere Stromdichten beobachtet.

0,00 Am” 0,28 Am”

7.5 Wissenschaftlicher Beitrag der Arbeit

In diesem Kapitel wurde die Entstehung von Wirbelstrémen im menschlichen Koérper durch
die Gradientenfelder der Magnetresonanztomographie numerisch untersucht. Es wurde gezeigt,
wie einfache und komplexe Gradientenpulsformen durch eine Fourierreihenentwicklung zerlegt
werden kénnen, um das numerische Problem im Frequenzbereich zu l6sen, da eine Berechnung
im Zeitbereich durch das restriktive Stabilitdtskriterium und der daraus folgenden hohen Anzahl
an Rechenschritten nicht méglich war.

Dartiber hinaus wurde gezeigt, wie die numerischen Rechenergebnisse wiederum in eine Reihe
entwickelt werden miissen, um den zeitlichen Verlauf der induzierten Stromdichte berechnen zu
konnen. Anhand zweier Beispielszenarien wurden zwei Gradientenpulssequenzen exemplarisch
mit einem hochaufgelésten Oberkérpermodell berechnet. Die erste Gradientensequenz wurde in
Anlehnung an die Studie von SIMUNIC ET AL. (1996A) gewihlt, um einen Vergleich der eigenen
Ergebnisse mit einer bekannten Studie zu erméglichen und so die numerische Vorgehensweise
zu validieren. Es zeigte sich, dass die Aussagen und die von SIMUNI¢ ET AL. angegebenen
Gréflenordnungen der induzierten Stromdichte bestétigt werden konnten.

In einer weiteren numerischen Untersuchung wurde eine GRE-Gradientensequenz mit einer dop-
pelten Gradientenpulsform untersucht, die eine aufwindigere Fourierreihenentwicklung notwen-
dig machte. Es zeigte sich, dass je steiler die Rampe eines Gradientenpulses ist desto gréfier ist
die induzierte Stromdichte. Zwischen Gradientensteilheit und maximaler Stromdichte im Kérper
konnte in dieser Arbeit ein fast linearer Zusammenhang nachgewiesen werden. In Kombination
mit einer Positionierung des Herzmuskels im Zentrum einer Gradientenspule konnte die doppelte
trapezférmige Gradientenpulsform im untersuchten Fall Stromdichten im Herzmuskel induzie-
ren, bei der unerwiinschte Stimulationen von Muskel- und Nervengewebe mdoglich sind.

Mit dieser Arbeit steht nun eine Méglichkeit zur numerischen Abschitzung der Risiken von
Gradientenpulsformen auf den menschlichen Koérper zur Verfligung. Aufgrund der erhaltenen
Ergebnisse sind weitere numerische Betrachtungen notwendig, um die méglichen Risiken fiir Pa-
tienten im Falle von Rampensteilheiten in der Gréflenordnung von 160 mT/(m-ms) weitergehend
zu untersuchen.
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Kapitel 8

Optimierung von Neutralelektroden
in der Elektrochirurgie

8.1 Einfiihrung

8.1.1 Historischer Uberblick

Die monopolare Elektrochirurgie ist heutzutage als modernes Werkzeug im Operationssaal nicht
mehr wegzudenken. Aufgrund der hohen Temperaturen an der aktiven Elektrode werden Gefafie
durch den Hochfrequenzstrom direkt wihrend des Schneideprozesses verschlossen. Dieses Ver-
fahren ist im allgemeinen schonender fiir den Patienten, da geringere Blutverluste auftreten,
als bei herkdmmlichen Operationsmethoden. Als Gegenpol zum Operationswerkzeug muss eine
groBflichige Neutralelektrode auf den Ko&rper des Patienten geklebt werden, damit der Strom
vom Operationswerkzeug zum Hochfrequenzgenerator zur{ickflieBen kann.

Trotz der notwendigerweise groflien Flichen dieser Neutralelektroden treten immer wieder un-
beabsichtigte thermische Verletzungen der Haut, insbesondere am Rand dieser Elektroden, auf.
In der Literatur finden sich zahlreiche Berichte tiber Verbrennungen infolge von elektrochirurgi-
schen Eingriffen (BATTIG, 1968; MASAKO & ICHIYNAGI, 1973; SCHELLHAMMER, 1974).

In den Anfangen der Elektrochirurgie wurde der Strom des Hochfrequenzgenerators einfach tiber
den Operationstisch von der monopolaren Koagulationselektrode gegen Erde geleitet. Diese un-
kontrollierte Stromriickfithrung fiihrte insbesondere an den Auflagestellen des Patientenkdrpers
auf dem Operationstisch zu Verbrennungen (GEDDES & BAKER, 1989).

Verbesserungen dieser Problematik brachten schlieflich Neutralelektroden, die den Strom kon-
trolliert {iber eine grofle Metallfliche, die auf Bauch oder Riicken des Patienten platziert wurde,
zum Hochfrequenzgenerator zuriickfihrt und damit iiber eine vorgegebene Fliche eine risikoar-
me Stromdichte zu gewéhrleisten. Allerdings traten auch hier lokale Verbrennungen auf, die auf
den unterschiedlichen elektrischen Kontakt mit der Haut zuriickzufithren waren. Die Elektro-
den wurden daraufhin mit einem leitfihigen Gel beschichtet, welches den Ubergangswiderstand
zwischen Metall und Haut verringerte und zudem fiir einen gleichméfigen elektrischen Kontakt
sorgte. Studien wie z.B. von PEARCE ET AL. (1979), die Elektroden mit und ohne Leitgel mit-
einander verglichen, zeigten deutliche Unterschiede zugunsten der Elektroden mit Leitgel, die
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Abbildung 8.1: Urspriingliche An- % Aive Fleldrode
wendung der monopolaren Elektro-
chirurgie in der klinischen Praxis. Der
Patient ist iiber den Operationstisch
mit dem Hochfrequenzgenerator ver-
bunden. Durch die ungleiche Aufla-

geflache des Patientenkorpers kam es HF Neutralelekirode
immer wieder zu schweren Verbren-
nungen (GEDDES, 1995). Hoonfequens

generator

To g 1

sich in Form von homogeneren Temperaturverteilungen auf der Haut und insgesamt kleineren
Maximaltemperaturen zeigten.

Entscheidend fiir Testverfahren von verschiedenen Elektrodentypen war die Entwicklung und
Anwendung geeigneter Messverfahren fiir die Temperaturverteilung auf der Hautoberfliche vor,
wihrend und nach dem Stromfluss durch die Neutralelektrode. Im Laufe der Jahre kamen
Messverfahren wie die Mikrowellenthermographie oder die Infrarotthermographie zum Einsatz
(EDRICH & COOKSON, 1987). Moderne Verfahren nutzen heutzutage zweidimensionale Arrays
mit Thermoelementen, die direkt auf die zu untersuchende Neutralelektrode geklebt werden und
so wihrend des Stromflusses eine Aufzeichnung der Temperaturen auf der Elektrodenoberfliche
ermdglichen (NESSLER, 1999).

Neben dem Risiko von Verbrennungen der Haut durch Erwdrmung unter einer Neutralelektro-
de bestehen bei der Elektrochirurgie auch Risiken fiir Tréger mit aktiven Implantaten, z. B.
dhnlich zu dem bereits vorgestellten Szenarium eines Patienten mit Herzschrittmacher im MR-
Tomographen in Abschnitt 6.3.2. Diese sollen aber nicht in diesem Kapitel diskutiert werden.
Stattdessen wird hier auf die entsprechenden Studien von SCHICK ET AL. (2001) und SCHICK
UND LANDSTORFER (2003) verwiesen.

8.1.2 Entwicklung neuer Neutralelektrodendesigns

Trotz der verbesserten elektrischen Eigenschaften der Neutralelektroden blieben Verbrennungen
insbesondere an den Rindern von Neutralelektroden nicht aus. In weiteren Arbeiten erkannten
OVERMYER ET AL. (1979), dass diese Erscheinungen durch eine Konzentration der Stromdichte
an den Auflenbereichen der Neutralelektroden verursacht wurden. Dies wurde auch von GEDDES
UND BAKER (1989) berichtet. Bereits im Jahre 1982 fiihrten WILEY UND WEBSTER (1982) in
einer theoretischen Arbeit den Nachweis und zeigten an einer einfachen kreisrunden Neutralek-
trodengeometrie, dass der Innenbereich von Neutralelektroden nur einen geringen Beitrag zur
Gesamtstromaufnahme leistet und schlugen schon damals vor, die Neutralelektroden mit kreis-
runden Elektrodenringen zu umgeben, die sich auf das Erwirmungsverhalten gilinstig auswirken
sollten. Trotz dieser wichtigen Arbeit fand sich bis vor kurzem keine Umsetzung und Weiterent-
wicklung dieser Idee.
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Abbildung 8.2: Technische Zeichnung der
Neutralelektrode mit Aquipotentialring, der
die beiden stromfiihrenden halbkreisférmi-

gen Elektroden umschliesst, aber nicht mit
ihnen direkt verbunden ist. Die Zeichnung
beinhaltet auch Teile der Hydrogelschicht,
die unter der Aluminiumschicht (hier in dun-
kelgrau) als Kontaktmedium aufgetragen
ist, sowie Teile der Tragerfolie aus Kunst-
stoff, auf der die Elektrode fiir den Trans-
port nach der Herstellung aufgeklebt wird.
Alle Massangaben sind in mm.

Um die Erwdrmung an den Elektrodenrédndern zu verbessern, wurde im Jahr 2000 von der Fir-
ma FErbe Elektromedizin in Tiibingen ein Neutralelektrodendesign entwickelt, welches neben der
herkémmlichen stromfiihrenden Neutralelektrode noch mit einem nicht konnektierten Aussen-
ring, dem sogenannten Aquipotentialring, umgeben ist (vgl. Abbildung 8.2). Klinische Studien
zeigten, dass mit Hilfe des Aquipotentialringes bei vergleichenden Messungen eine Reduktion
der Erwiarmung auf der Haut der Probanden festgestellt werden konnte. Indirekt wurde dabei
die Idee von WILEY UND WEBSTER aus dem Jahr 1982 aufgegriffen.

Die Neutralelektrode mit Aquipotentialring zeigte in der klinischen Studie homogenere Wirme-
verteilungen auf der Haut und eine niedrigere Maximaltemperatur als Vergleichselektroden ohne
Ring. Klinische Studien lassen zwar grobe Tendenzen beztiglich physiologischer und anatomi-
scher Parameter und der zu erwartenden Maximaltemperatur der Hautoberflache erkennen, aber
dennoch sind auch die Aussagen in der Literatur diesbeziglich sehr vage, da eine abgeschlossene
theoretische Beschreibung bislang fehlt (NESSLER, 1996; EDRICH & COOKSON, 1987; GEDDES,
1995). In den folgenden Abschnitten wird gezeigt, wie mit Hilfe der numerischen Feldrechnung
diese Liicke geschlossen werden kann.

Da sich dieses neue Design in experimentellen Untersuchungen als sehr vorteilhaft erwiesen hat,
ergaben sich aus den klinischen Ergebnissen neue Fragestellungen. Dazu gehdrten unter anderem
Fragen nach der Abhédngigkeit der Erwdrmung von physiologischen Parametern der Probanden
und von der eigentlichen Form der Neutralelektrode, sowie Fragen nach der zeitlichen Entwick-
lung der Erwidrmung. Mogliche Antworten lassen sich mit Hilfe der numerischen Feldtheorie
gewinnen, da mit diesem Verfahren gezielt die Auswirkung der Variation einzelner Parameter
durch vergleichende numerische Rechnungen reproduzierbar ermittelt werden kann. Im Experi-
ment ist die gezielte Variation einzelner physiologischer Parameter in der Regel sehr schwierig,
daher kénnen hier mit Hilfe der numerischen Feldrechnung Erkenntnisse erlangt werden, die zu
einer weiteren Verbesserung der Patientensicherheit bei der Elektrochirurgie fiihren.
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Abbildung 8.3: Experimentelles Vorgehen beim BLY ™
Test einer neuen Neutralelektrode. Die Elektro- i. D [D J l IR I
de wird auf beide Oberschenkel eines Probanden - e
aufgeklebt. Danach fliesst ein Teststrom iiber den e f
Probanden. Mit Hilfe einer Infrarot-Warmebild-

kamera wird die Erwarmung auf der Hautober-
flache aufgezeichnet. Die Elektrode erhdlt dann

_.
i
— ]
'I:"

ihre Marktzulassung, wenn bei keinem der vor-
geschriebenen Probanden eine unzulassig groBe
Erwarmung liber 6 K auftritt.

8.1.3 Teststandards fiir Neutralelektroden

Bevor eine Neutralelektrode eine Marktzulassung erhilt, muss sie in verschiedenen experimentel-
len Verfahren getestet werden. Diese Verfahren werden durch die AAMI HF-18-Norm einheitlich
geregelt und festgelegt(AAMI, 2001). Die Testverfahren iiberpriifen die Sicherheit einer Neu-
tralelektrode und sollen somit ausschliessen, dass es bei Anwendung einer Neutralelektrode zu
Verbrennungen des Patienten kommen kann.

Der §4.2.3.1 der AAMI Norm schreibt vor, dass eine Neutralelektrode bei mindestens fiinf weibli-
chen und fiinf mannlichen Probanden getestet werden muss. Bevor der Test durchgefiihrt werden
kann, muss sich jeder Proband bereits mindestens eine halbe Stunde im Untersuchungsraum auf-
halten und ausruhen, um so iiber eine konstante Durchblutung der Extremititen zu verfiigen
und mit der Umgebung thermodynamisch im Gleichgewicht zu sein. Unmittelbar vor der Ap-
plikation der beiden Neutralelektroden auf den Oberschenkeln wird die Oberflichentemperatur
der Haut mit Hilfe einer Infrarot-Warmebildkamera gemessen. Danach werden die Neutralelek-
troden, die getestet werden sollen, auf beide Unterschenkel des Probanden aufgeklebt, wie in
Abbildung 8.3 zu sehen ist. Dann fliesst bei erwachsenen Probanden fiir eine Dauer von 60 s
ein sinusformiger Teststrom mit einem Mittelwert von 700 mA (+10 %) iiber die Elektroden
durch den Kérper. Bei Kindern wird der Teststrom auf einen Mittelwert von 500 mA (£10 %)
reduziert. Unmittelbar nach dem Stromfluss werden die Elektroden abgezogen und mit Hilfe der

Infrarot-Wirmebildkamera die resultierende Erwirmung auf der Hautoberfliche gemessen (vgl.
Abbildung 8.4).

In §4.2.8.2.3 der AAMI Norm wird ein weiteres Testverfahren beschrieben, welches einen Test
des Sicherheitsystems des Hochfrequenzgenerators darstellt, das die Impedanz zwischen den
beiden Elektrodenhilften tiberwacht. Da diese Impedanz ein Mass fiir den Kontakt der Elektro-
denklebefliche mit der Haut darstellt, muss das Sicherheitssystem des Hochfrequenzgenerators
ein Alarmsignal abgeben, sobald die Impedanz unter einen Grenzwert fillt. Dies ist gleichbe-
deutend mit einer Verschlechterung des elektrischen Kontakts zwischen Neutralelektrode und
Patient. Man geht in diesem Fall davon aus, dass sich die Elektrode wihrend des Betriebs vom
Patienten 16sen und sich dadurch die aktive stromfiihrende Kontaktfliche so weit verringern
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Abbildung 8.4: Aufnahmen der Warmebildkamera der Hautoberfliche von zwei Probanden bei
Erwdrmungstest gemaB der AAMI HF-18-Norm. Auf der linken Aufnahme ist die Temperaturver-
teilung einer Elektrode mit Aquipotentialring und einer Elektrode ohne Aquipotentialring zu sehen.
Das Ergebnis zeigt, dass Elektroden mit Aquipotentialring beziiglich der maximalen beobachteten
Erwdrmung, sowie der symmetrischeren Form des Erwdrmungsmusters vorteilhafter sind. Bei der
Aufnahme auf der rechten Seite konnte am Rand der Neutralelektrode auf dem linken Oberschenkel
eine lokale , heiBe" Stelle beobachtet werden, die wahrscheinlich durch ein oberflachliches BlutgefaB
verursacht wurde.

kann, dass es durch die dadurch resultierende hohere Stromdichte an der kleineren Kontakt-
fliche zu Verbrennungen des Patienten kommen kann.

Mit diesem Test soll sichergestellt werden, dass das Sicherheitssystem des Elektrochirurgiegerétes
zuverléssig arbeitet, so dass bei Kontaktproblemen ein Alarm ausgeldst wird, bevor es zu Ver-
brennungen der Haut der Probanden kommen kann. Dieses Testverfahren sieht vor, dass die
Elektroden zunéchst auf den Oberschenkeln des Probanden fixiert werden. Danach werden die
Elektroden bei angeschlossenem Hochfrequenzgenerator langsam wieder von den Oberschenkeln
abgezogen, bis das Alarmsystem des Elektrochirurgiegerites anspricht. Dann fliefit wiederum ein
Teststrom von 700 mA (£10%) fiir 60 s durch den Probanden. Auch hier erfolgt unmittelbar
nach dem Stromfluss eine Messung der Hauttemperatur mittles Warmebildkamera.

Damit eine Elektrode ihre Marktzulassung erhilt, diirfen bei beiden beschriebenen Testverfahren
bei keinem Probanden an keiner Stelle auf der Hautoberfliche absolute Erwirmungen iiber
6 K beobachtet werden. Die beiden Testverfahren scheinen auf dem ersten Blick sehr &hnlich
zueinander zu sein. Allerdings stellt das Verfahren nach § 4.2.8.2.3 die héheren Anforderungen
an die Neutralelektrode, da hier die Kontaktfliche zwischen Elektrode und Proband geringer ist
und damit bei gleicher Stromstérke hthere Stromdichten erzielt werden.

8.1.4 Imhalt der weiteren Unterkapitel

In den folgenden Abschnitten werden zunéchst die experimentellen Ergebnisse der klinischen Stu-
die von Neutralelektroden mit Aquipotentialringen wiedergegeben. Danach wird das numerische
Oberschenkelmodell und die numerischen Berechnungen vorgestellt, gefolgt von einer Diskussi-
on und Bewertung der Ergebnisse. Im Anschluss daran wird in einem eigenen Abschnitt auf die
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besondere Problematik bei der elektrochirurgischen Behandlung von Kindern eingegangen und
ein numerisches Modell zur Bestimmung der zuldssigen Grenzelektrodenfliche beschrieben.

Die numerischen Ergebnisse bei der Bestimmung der zuldssigen minimalen Elektrodenfliche
werden in einem weiteren Abschnitt um eine theoretische Betrachtung ausgehend von den Vor-
arbeiten von WILEY UND WEBSTER (1982) ergénzt, bei der ein Zusammenhang zwischen Elek-
trodengroBe und erwarteter Erwarmung der Hautoberfliche abgeleitet wird. Diese Abschitzung
wird mit den berechneten numerischen Ergebnissen verglichen. Eine Zusammenfassung der wich-
tigsten Ergebnisse und Erkenntnisse aus dieser Forschungsarbeit schlielt dieses Kapitel ab.

8.2 Neutralelektroden mit einem Aquipotentialring

8.2.1 Ergebnisse der klinischen Studie

In einer klinischen Studie wurden Testmessungen nach § 4.2.3.1 der AAMI Norm an 30 minn-
lichen und weiblichen Probanden durchgefiihrt (vgl. Abschnitt 8.1.3). Der Messaufbau wird in
Abbildung 8.3 wiedergegeben. Geméafl der vorgeschriebenen Testprozedur wurde vor und nach
der Stromflussdauer von 60 s eine Thermographiemessung mit der Wéarmebildkamera durch-
gefiihrt.

Abbildung 8.4 gibt zwei Messergebnisse wieder. Im linken Teil der Abbildung wird der Effekt
des Aquipotentialrings im direkten Vergleich zwischen einer Elektrode ohne und einer mit Ring
gezeigt. Die Elektrode ohne Aquipotentialring zeigt ein sehr unregelmiBiges Erwirmungsmuster
und eine Maximaltemperatur von 37,5 °C nach einer Stromflussdauer von 60 s im Vergleich zu
einer Maximaltemperatur von 35,2 °C bei der Elektrode mit Aquipotentialring. Die Ausgang-
stemperatur der Hautoberfliche lag in diesem Fall bei 33,0 °C vor dem Stromfluss. Im rechten
Teil der Abbildung ist die Bildung einer heiflen Stelle (,,Hot-Spot“) am Rand der Neutralelek-
trode zu erkennen. Friihere experimentelle Arbeiten zu diesem Thema berichten ebenfalls {iber
die Entstehung von Hot-Spots und verbinden die Entstehung lokaler heifler Punkte mit ober-
flichlichen Blutgefifien (EDRICH & COOKSON, 1987). Diese Beobachtung und der Hinweis aus
der Literatur wurde aufgegriffen und in die darauf folgende numerische Studie mit einbezogen.

Bei allen 30 Probanden wurde die maximale Hauttemperatur vor und nach dem Stromfluss
bestimmt. Der Durchschnittswert vor dem Stromfluss lag bei 31,9 °C und nach dem Stromfluss
wurde eine durchschnittliche maximale Hauttemperatur von 34,8 °C beobachtet. Entscheidend
fiir die Bewertung der Ergebnisse nach der AAMI Norm §4.2.3.1 ist aber die absolute maximale
Temperaturerh6hung. Dafiir ergab sich ein Mittelwert von 3,4 K bei Berticksichtigung aller 30
Probanden. Als Maximalwert wurde eine absolute Erh6hung von 4,5 K bei einem Probanden
beobachtet (GOLOMBECK ET AL., 2003).

Nach den Testmessungen an 30 Probanden nach §4.2.3.1 der AAMI Norm wurden an tiber 150
Probanden Messungen nach § 4.2.8.2.3 der AAMI Norm durchgefuehrt (vgl. Abschnitt 8.1.3).
Auch bei diesen Tests des Sicherheitssystems des Hochfrequenzgerdtes wurden keine absoluten
Erwdrmungen tber 6,0 K beobachtet. Da in allen Testfillen die AAMI Norm strikt eingehalten
wurde, konnte die Elektrode fiir den Markt zugelassen werden.
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Abbildung 8.5: Schnitt durch den Oberschenkel des Vi-
sible Man Datensatzes nach SACHSE ET AL. (2000B).
Anhand des anatomischen Aufbaus des Oberschenkels
wurden die Dimensionen fiir das numerische Modell
gewahlt. Dabei wurde bis auf den Knochen eine Haut-,
Fett- und Muskelschicht, sowie ein Blutgefda modelliert.

8.2.2 [Erstellung der Oberschenkelschichtmodelle

Die numerischen Untersuchungen wurden an einem quaderférmigen Gewebeblock durchgefiihrt,
der aus einer Muskel-, Fett- und Hautschicht aufgebaut ist. Der Block hat eine Breite von
180 mm, eine Linge von 400 mm und eine variable Hohe zwischen 72 mm und 92 mm. Die
Dicken der einzelnen Gewebeschichten wurden in Anlehnung an das anatomische Modell des
Visible Man gewihlt, wie in Abbildung 8.5 dargestellt ist (SACHSE ET AL., 2000B) und anhand
verfligbarer Angaben aus Lehrbiichern der Anatomie entnommen (FRICK, 1992; GRAAF &
Fox, 1994; JUNQUEIRA & CARNEIRO, 2001).

Fiir die Haut- und die Muskelschicht wurden anhand der Lehrbuchangaben eine feste mittlere
Schichtdicke von 2 mm und 70 mm angenommen. Die Dicke der Fettschicht wurde zwischen
0 mm und 20 mm variiert, um eine Unterscheidung zwischen schlanken und beleibten Probanden
zu ermoglichen. Die Dicke der Fettschicht héingt dariiber hinaus auch mit dem Geschlecht der
Testperson zusammen, so dass die Variation dieses Parameters besonders untersucht wurde. Als
Hauttyp wurde trockene oder feuchte Haut angenommen, sowie ein Mischtyp als Mittelwert
aus den dielektrischen Parametern fiir feuchte und fiir trockene Haut. Bei zwei Modellen wurde
dariiber hinaus ein Blutgefafi mitberiicksichtigt, einmal als oberflichliches Blutgefafl unmittelbar
unter der Hautoberflache, im anderen Fall als tiefliegendes Blutgefaf in der Muskelschicht, um so
den Einfluss auf das entstehende Erwdrmungsmuster und das Auftreten lokaler ,heifler” Stellen
zu untersuchen.

Die Elektrode selbst wurde mittels einer Aluminiumschicht von 25 pm Dicke modelliert, die iiber
eine 350 pum dicke Hydrogelschicht mit der Hautoberfliche des Oberschenkelmodells verbun-
den wurde. Die dielektrischen Eigenschaften der Aluminiumschicht wurden einem Tabellenwerk
entnommen (KUCHLING, 1991), die der Hydrogelschicht vor der Simulation in eigenen Expe-
rimenten ermittelt (GOLOMBECK ET AL., 2003). Die Geometrie der Neutralelektrode wurde
nach den Vorgaben aus Abbildung 8.2 modelliert. Um den Einfluss des Aquipotentialringes auf
das Erwarmungsmuster zu untersuchen, wurde dieser Ring in einigen numerischen Simulationen
weggelassen, bei gleichbleibender Dimensionierung der beiden stromfiihrenden Innenflichen der
Neutralelektrode.
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Aktive Elektrode |
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Neutralelektrode

Aluminium
Hydrogel
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Abbildung 8.6: Numerisches Oberschenkelmodell mit Neutralelektrode und aktiver Elektrode. Die

beiden Elektroden sind iiber einen Hochfrequenzgenerator verbunden. Das Modell besteht aus einer

Haut- und Muskelschicht konstanter Dicke, sowie einer Fettschicht mit variabler Dicke. Insgesamt

wurden zehn verschiedene Modelle mit unterschiedlichen physiologischen Modellparametern erstellt.

Bei zwei Modellen wurde zusatzlich ein BlutgefaB eingefiigt, um den Einfluss auf das resultierende
Erwarmungsmuster zu untersuchen.

Um den Einfluss einer leitenden Verbindung zwischen den stromfiihrenden Elektrodenflachen
und dem Aquipotentialring zu untersuchen, wurde bei Modell 3 zusétzlich ein ohmscher Wider-
stand eingefiigt, der in einer eigenen Reihe von numerischen Berechnungen variiert wurde.

Insgesamt wurden fiir diese numerische Studie zehn verschiedene numerische Modelle erstellt.
Die Modelle 1 und 2 vergleichen hierbei die Wirkung des Aquipotentialringes bei trockener
Hautoberfliche, indem bei Modell 1 der Aquipotentialring der Neutralelektrode hinzugefiigt
wurde und bei Modell 2 fehlte. Die Modelle 3 und 4 vergleichen ebenfalls die Wirkung des
Aquipotentialringes. Nur wird in diesen Fillen eine feuchte Hautoberfliche angenommen. Die
Auswirkung der Fettschicht auf das entstehende Erwirmungsmuster wurde in den Modellen
5 und 6 mit gemischtem Hauttyp untersucht. Bei Modell 5 wurde mit einer Fettschicht von
20 mm eine adipdse Testperson angenommen, bei Modell 6 fehlte die Fettschicht komplett. Die
Modelle 7 und 8 veranschaulichen die Unterschiede zwischen trockener und feuchter Haut bei
einer Fettschicht von 20 mm. In den Modellen 9 und 10 wurde die Auswirkung einer Vene auf
das entstehende Erwdrmungsmuster untersucht, indem bei Modell 9 eine oberflichennahe Vene
in der Fettschicht modelliert wurde und bei Modell 10 diese Vene in der tieferen Muskelschicht
zu liegen kam. Eine komplette Ubersicht iiber alle variierten Modellparameter befindet sich in
Tabelle 8.1. Die fiir die Simulationen notwendigen dielektrischen und physikalischen Parameter
finden sich in den Tabellen B.1 und B.4.
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Modell  Haut Fett ~ Muskel Hauttyp Vene Neutralring

iInmm inmm inmm

1 2 12 70 Trocken  Nein Ja
2 2 12 70 Trocken  Nein Nein
3 2 12 70 Feucht Nein Ja
4 2 12 70 Feucht Nein Nein
5 2 20 70 Gemischt Nein Ja
6 2 0 70 Gemischt Nein Ja
7 2 20 70 Trocken  Nein Ja
8 2 20 70 Feucht Nein Ja
9 2 12 70 Trocken  Hoch Ja
10 2 12 70 Trocken Tief Ja

Tabelle 8.1: Dicke der einzelnen Gewebeschichten und weitere Modellparameter fiir die zehn ver-

schiedenen Oberschenkelschichtmodell. Im einzelnen wurde die Dicke der Fettschicht, die Feuchtig-

keit der Hautschicht und der Elektrodentyp variiert, sowie der Einfluss einer oberflachlichen und einer
tieferliegenden Vene untersucht.

Abbildung 8.6 zeigt das komplette numerische Oberschenkelmodell mit allen Gewebetypen und
Elektrodenmaterialien. Die aktive Elektrode befindet sich in einem Abstand von 260 mm vom
Neutralelektrodenmittelpunkt. Dies ist ein typischer Abstand, wie er bei einem neutralelektro-
dennahen chirurgischen Eingriff in der Bauchregion vorkommt. Die Nihe der aktiven Elektrode
zur Neutralelektrode wurde auch unter dem Gesichtspunkt gew#hlt, eine mdoglichst einseitige
Anstromung der Neutralelektrode zu erzielen, was sich auch darin ausdriickt, dass die beiden
stromfiihrenden Elektrodenteile senkrecht und nicht parallel zur Hauptstromflussrichtung aus-
gerichtet wurden. Dies erfolgte im Gegensatz zur klinischen Anwendung, bei der aus Griinden
der Symmetrisierung des Stromflusses durch das Gewebe die Elektrode immer so ausgerichtet
wird, dass die erwartete Hauptstromflussrichtung parallel zur Teilungslinie der beiden Elektro-
denhilften ist. Durch die in dieser Arbeit gew&hlte Anordnung wird die zur aktiven Elektrode
ndherliegende Hilfte der Neutralelektrode verstérkt angestromt und es kommt zu einer gréfleren
Asymmetrie der Wirmeverteilung, sowie zu einer htheren Maximaltemperatur auf der Hauto-
berfliche. Die Anwendung stellt den fiir die praktische Anwendung ,schlimmsten Fall“ dar.

Das Gitter des numerischen Modells wurde entsprechend der Dimensionierung der Neutralelek-
trode angepasst. Die Netzlinien wurden an den Réndern der Neutralelektrode verdichtet, um
eine gute numerische Approximation zu erméglichen und die Elektrodengeometrie moglichst gut
wiederzugeben. Durch die diinne Elektroden- und Hydrogelschicht, war es insbesondere notwen-
dig entlang der Hohenachse des Modells besonders fein geometrisch aufzulésen. So ergab sich
ein Gitternetz aus ca. 800000 Voxeln mit unterschiedlichen Kantenldngen.

8.2.3 Durchfithrung der numerischen Modellierung

Das numerische Problem wurde zunéchst im Frequenzbereich bei einer fiir die Elektrochirurgie
typischen Frequenz von 350 kHz mit Hilfe des PSBCGR-Verfahrens des Programmpaketes MA-
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FIA W3 gelost (vgl. Abschnitte 2.3 und 5.2.1). Das numerische Verfahren wurde erst nach
25000 Iterationsschritten beendet, da durch die groflen Schrittweitenunterschiede in der Gitter-
auflésung bedingt durch die sehr diinne Elektrodenschicht die Konvergenzgeschwindigkeit des
Algorithmus sich als sehr langsam herausstellte und erst nach mehr als 20000 Iterationen ei-
ne zufriedenstellende Konvergenz erreicht werden konnte. Die Rechenzeiten betrugen fiir jedes
Modell ungefihr 96 h auf einer IBM SP-SMP mit einem schnellen 512 MHz-Knoten bei einem
Hauptspeicherbedarf von 1 GB.

Im Anschluss an die Losung des elektrodynamischen Problems wurde die Leistungsabsorption im
Oberschenkelmodell mit Hilfe von Gleichung (4.7) berechnet und mit Gleichung (4.8) die maxi-
male Erwdrmung auf der Hautoberfliche mit einer Schlimmsten-Falls-Betrachtung abgeschitzt
(vgl. Abschnitt 4.2.3). Dazu wurde auf der Hautoberfliche und den angrenzenden Voxeln der
Hydrogelschicht nach dem Punkt mit der maximalen Leistungsabsorption gesucht.

Danach wurde mit dem MAFIA-Modul H3 die Biow#rmeleitungsgleichung im Zeitbereich geldst,
wie bereits in Unterkapitel 2.5 beschrieben wurde. Die physikalischen Paramter fiir die thermo-
dynamischen Eigenschaften von Haut, Fett, Muskel und Blut, sowie den Elektrodenmaterialien
sind in Tabelle B.1 aufgefiihrt. Die einzelnen Materialien wurden vor Beginn der Simulation
auf eine konstante Anfangstemperatur gesetzt. Die Anfangstemperaturen sind in Tabelle 8.3
wiedergegeben. An der Oberfliiche des Oberschenkelmodells wurde der Ubergang vom Modell
in die kiihlere Umgebung als Kontakt mit einem fluiden Medium modelliert. Der Warmeiiber-
gangskoeflizient o wurde auf 75 W /(K - m?) gesetzt, was einer leichten Luftstromung entspricht
(vgl. mit Abschnitt 5.3.1).

Die Stromflussdauer von 60 s wurde in 240 Einzelschritte von je 0,25 s Dauer aufgeteilt und
mit dem impliziten Verfahren berechnet (vgl. Abschnitt 2.5.2). Die beim impliziten Verfahren
notwendige Invertierung der Systemmatrix erfolgte nach kurzer Zeit mit sehr guter Konvergenz
und erméglichte dadurch eine Verkiirzung der notwendigen Rechenzeit. Die Rechenzeiten des
thermodynamischen Algorithmus betrugen ungefihr 6 h.

Bei der thermodynamischen Rechnung wurde zunéchst die Gewebedurchblutung vernachléssigt,
da dieser Parameter einer grofien physiologischen Schwankungsbreite unterliegt. Um die Aus-
wirkung der Gewebedurchblutung einschitzen zu kénnen, wurden im Anschluss einige thermo-
dynamische Rechnungen unter Berticksichtigung der Gewebeperfusion durchgefiihrt. Die Werte
fir die hierzu verwendeten Gewebeperfusionsraten befinden sich in Tabelle B.1.

Als Stromstérke wurde bei den Berechnungen unabhéngig von der AAMI Norm eine Stromstérke
mit einem Mittelwert von 1 A verwendet. Als Qualitdtsmerkmal fiir die berechneten Lésungen
wurde die Stromstérke durch das Oberschenkelmodell und die Hydrogelschicht und mit der
anregenden Stromstérke verglichen. Es zeigte sich, dass bei der gew#hlten hohen Anzahl an
Iterationsschritten die Stromstédrken durch das Gewebe und die Hydrogelschicht um weniger als
10 % vom Vorgabewert abwichen und damit in einem akzeptablen Rahmen lagen. Die resultie-
renden Erwirmungen sind proportional zum Quadrat der Stromstirke. Damit lassen sich dann
die erhaltenen Ergebnisse mit verschiedenen Stromstérken in der medizinischen Praxis oder mit
der Normvorgabe vergleichen.

8.2.4 FErgebnisse der Simulationsrechnungen

Abbildung 8.7 zeigt neun von zehn Erwdrmungsmuster, die sich mit dem gekoppelten elektro-
thermodynamischen Verfahren ohne Berticksichtigung der Gewebeperfusion nach einer simulier-
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Model 2

Model 5 ¥ Model 6

Y 4

Model 9
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Abbildung 8.7: Maximaltemperatur auf der Hautoberfliche der Oberschenkelmodelle nach einer
Stromflussdauer von 60 s berechnet mit dem gekoppelten elektro-thermodynamischen Verfahren. Die
Bilder von Modell 1 mit Aquipotentialring und Modell 2 ohne Aquipotentialring veranschaulichen
die Auswirkungen des Aquipotentialringes auf die Warmeverteilung bei einer Fettschichtdicke von
12 mm und trockener Hautoberflache. Im direkten Vergleich dazu geben die Bilder von Modell 3 und
4 die Warmeverteilungen bei feuchter Hautoberflache wieder. Die Ergebnisse von Modell 5 und 6
zeigen die Auswirkung der Fettschicht auf die Warmeverteilung. Bei Modell 5 wurde eine Fettschicht
von 20 mm angenommen. Bei Modell 6 wurde fehlte die Fettschicht komplett. Die Ergebnisse von
Modell 7 und 8 zeigen die Warmeverteilung bei einem Modell mit einer Fettschicht von 20 mm und
trockener (Modell 7) und feuchter Haut (Modell 8). Modell 9 veranschaulicht die Auswirkung eines
oberflachlichen BlutgefaBes auf die Entstehung von lokalen , heiBen” Stellen. Die Warmeverteilung
von Modell 10 fehlt in dieser Darstellung. Diese ist aber mit der von Modell 1 weitgehend identisch,
da hier das tiefliegende BlutgefaB nur einen geringen Effekt auf die resultierende Warmeverteilung
hat.
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ten Stromflussdauer von 60 s ergeben haben. Damit die einzelnen Ergebnisse besser miteinander
verglichen werden kénnen wurde fiir alle Einzelbilder die gleiche Temperaturfarbskala verwendet.

Modell 10 wurde bei dieser Darstellung nicht beriicksichtigt, da dieses Modell kaum Abweichun-
gen in seinem Erwdrmungsmuster zu Modell 1 zeigte, da aufler dem tiefliegenden Blutgefifl alle
anderen physiologischen Parameter bei beiden Modellen identisch waren. Da die dielektrischen
Eigenschaften von Blut denen der Muskulatur bei der betrachteten Frequenz von 350 kHz dhn-
lich sind (vgl. Tabelle B.1) sind die Ergebnisse nahazu identisch und Modell 10 liefert daher
keine neuen Erkenntnisse.

Bei den Modellen 1 und 2, sowie 3 und 4 wurde die Auswirkung des Aquipotentialrings auf die
entstehende Temperaturverteilung untersucht. Es zeigte sich, dass sich mit Aquipotentialring
gleichmissigere balancierte Erwdrmungsmuster ergeben und dadurch die Maximaltemperatur
am Elektrodenrand deutlich reduziert werden kann. Bei den Modellen mit feuchter Hautober-
fliche (3 und 4) ergaben sich im Vergleich zu den Modellen mit trockener Haut (1 und 2) die
gleichen Ergebnisse beziiglich der Symmetrisierung der Erwdrmungsmuster. Allerdings liegen bei
feuchter Haut die erreichten Maximaltemperaturen tiber denen bei trockener Hautoberflache.

Die Untersuchung der Auswirkungen der Fettschicht bei den Modellen 5 und 6 zeigte, dass
eine dickere Fettschicht zwar das Erwirmungsmuster symmetrisiert, allerdings liegen die Maxi-
maltemperaturen deutlich iiber den Werten, die sich bei Modell 6 ergaben, welches tiber keine
Fettschicht verfiigt. Der Vergleich zwischen trockener und feuchter Haut bei den Modellen 7 und
8 zeigt in Anlehnung an die Ergebnisse der Modelle 1, 2, 3 und 4, dass bei feuchter Haut generell
mit hoheren Erwdrmungen zu rechnen ist.

Das Ergebnis von Modell 9 zeigt, dass oberflichliche Blutgeféfie in der Fettschicht des Patienten
einen groflen Einfluss auf das entstehende Erwirmungsmuster haben kénnen. Die modellierte
Vene ergibt im Vergleich zu Modell 1 an den Elektrodenrdndern groflere Temperaturerh6hungen.
In der Abbildung ist auflerdem die Lage und der Verlauf des BlutgeféBles deutlich erkennbar.

In Tabelle 8.2 finden sich die ermittelten Maximaltemperaturen unter der Elektrode auf der
Hautoberfliche nach einer Stromflussdauer von 60 s. In dieser Tabelle sind neben den Ergebnis-
sen der gekoppelten elektro-thermodynamischen Simulation auch die mit Hilfe der Schlimmsten-
Falls-Abschitzung nach Gleichung (4.8) ermittelten Maximaltemperaturen angegeben, die unter
Vernachldssigung jeglicher Wirmetransportmechanismen aus der berechneten im Gewebe absor-
bierten Leistung abgeschitzt wurden.

Tabelle 8.2 gibt dariiber hinaus auch die prozentualen Unterschiede der absoluten Maximal-
temperaturen und der relativen Erwdrmungen beider Verfahren an. Es zeigt sich, dass mit der
Schlimmsten-Falls-Abschitzung in jedem Fall die Maximaltemperatur an der Hautoberflache
erwartungsgemif iiberschitzt wird. Der Grad der Uberschitzung, der durch die prozentualen
Abweichungen der Maximalwerte untereinander angegeben wird, ist mitunter von Modell zu
Modell sehr unterschiedlich. Als Mittelwert ergibt sich eine Uberschitzung der relativen Tem-
peraturzunahme um ca. 80 % durch die einfache Schlimmsten-Falls-Abschéitzung. Die durch-
schnittliche Temperaturzunahme liegt mit der Schlimmsten-Falls-Abschitzung nach Tabelle 8.2
nach Mittelung aller zehn Ergebnisse bei 22,4 K und bei der thermodynamischen Betrachtung
bei 12,5 K1.

Die Berticksichtigung der Gewebeperfusion ergibt erwartungsgemifl deutlich unterschiedliche Er-
gebnisse. Betrachtet man die zeitliche Entwicklung der Erwdrmung an der Hautoberfliche von

! Diese Ergebnisse beruhen auf einer effektiven Stromstirke von 1,0 A, statt den durch die Norm geforderten

0.7 A.
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Modell  H3 W3 H3 W3 Abweichung
Maximaltemperatur maximale Zunahme absolut relativ
in K in K in K in K in % in %

1 313,6 318,3 8,6 13,3 1,5 54,7
2 316,9 334,3 11,9 29,3 5,5 146,2
3 315,2 312,6 10,2 16,6 2,0 62,8
4 319,9 326,3 14,9 21,3 2,0 43,0
5 322,6 328,9 17,6 23,9 2,0 35,8
6 313,2 317,1 8,2 12,1 1,3 47,6
7 319,9 336,1 14,9 31,1 5,1 108,7
8 323,4 325,8 18,4 20,8 0,7 13,0
9 316.,5 331,8 11,5 26,8 4,8 133,0
10 313,8 334,2 8,8 29,2 6,5 231,8

Tabelle 8.2: Ubersicht iiber die maximalen Hauttemperaturen nach einer Stromflussdauer von 60 s
fiir jedes numerische Modell. Dabei werden die Ergebnisse der thermodynamischen Rechnung ohne
Beriicksichtigung der Gewebeperfusion (H3) mit den Ergebnissen der Schlimmsten-Falls-Abschatzung
(W3) verglichen. Die Spalten zwei und drei geben dabei die Absolutwerte der Maximaltemperatur
ausgehend von einer Anfangshauttemperatur von 305 K an. Die dazugehdrige maximale relative
Erwarmung wird in den Spalten vier und fiinf wiedergegeben. Die Spalten sechs und sieben geben die
prozentuale Abweichung der Ergebnisse der Schlimmsten-Falls-Abschidtzung von den Maximalwerten
des thermodynamischen Algorithmus an bezogen auf die Absolutwerte (Spalte sechs) und auf die
maximale relative Erwdrmung (Spalte sieben). Die Ergebnisse zeigen, dass mit der Schlimmsten-
Falls-Abschatzung die Erwdrmung stets iiberschatzt wird.

Modell 5 so zeigt sich in Abbildung 8.8, dass ohne Berficksichtigung der Perfusion ein konstantes
Ansteigen der Hauttemperatur innerhalb der gesamten simulierten Zeitdauer von 60 s beobach-
tet werden kann, obwohl bereits Warmeverluste an die kéltere Umgebung beriicksichtigt werden
(vgl. mit der Diskussion thermodynamischer Randbedingungen in Abschnitt 2.4.2). Abbildung
8.9 zeigt denselben zeitlichen Verlauf bei Modell 5 unter Berticksichtigung der Gewebeperfusion
mit den Durchschnittswerten nach Tabelle B.1.

Es zeigt sich, dass hierbei bereits nach 24 s eine annéhernd konstante Temperaturverteilung
auf der Hautoberfliche erreicht wird. Dariiber hinaus findet auch eine zuséitzliche Erwdrmung
der Hautschicht durch den Blutfluss statt, da die Anfangshauttemperatur mit 305 K unter der
Bluttemperatur von 310 K liegt. Die nicht unter der Elektrode liegende Hautoberfliche erreicht
somit im Verlauf der Simulation eine konstante Oberflichentemperatur von ca. 308 K, da dann
der Warmeeintrag durch den Blut- und Stromfluss, sowie der Warmeverlust an die kéltere
Umgebung im Gleichgewicht sind.

Gleiches gilt fiir Modell 2, bei dem auch eine zusétzliche Simulation mit Berticksichtigung der Ge-
webeperfusion durchgefiithrt wurde. Abbildung 8.10 zeigt die Hautoberfliche nach einer Strom-
flussdauer von 60 s zum einen mit, zum anderen ohne Berticksichtigung der Gewebeperfusion.
Weitere Einblicke in die Auswirkung der Gewebeperfusion erméglicht ein Differenzbild der beiden
Temperaturverteilungen. Die wirmere Blutstromung durch die anfinglich kiithlere Hautschicht
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< 305 K lineare Skala > 320 K

Abbildung 8.8: Zeitliche Entwicklung der Erwdrmung auf der Hautoberfliche von Modell 5 ohne
Gewebeperfusion. Die einzelnen Bilder von links nach rechts und von oben nach unten besitzen einen
zeitlichen Abstand von 3 s. Das erste Bild links oben gibt die Temperaturverteilung nach einem Strom-
fluss von 3 s Dauer an. Das letzte Bild rechts unten gibt die Erwarmung nach einer Stromflussdauer
von 60 s an. Die Simulation zeigt im Gegensatz zu Abbildung 8.9, bei der die Gewebeperfusion mit
einfliesst, dass sich nach 60 s noch keine konstante Temperaturverteilung eingestellt hat. Die Maxi-
maltemperatur am Elektrodenrand wiirde bei einer langeren Stromflussdauer noch weiter ansteigen,
obwohl bereits Warmeverluste an die kaltere Umgebung mit 293 K beriicksichtigt wurden.

sorgt fiir eine generelle zusétzliche Erwirmung der Haut. Der Grofiteil der Hautoberflache ist
daher am Ende der Simulationszeit ,wirmer“ bei Berticksichtigung der Gewebeperfusion. Der
vorteilhafte Effekt der Durchblutung ist aber die Verringerung der Hauttemperatur an den
Elektrodenrdndern, der im Differenzbild zu erkennen ist. Die Durchblutung sorgt hierbei fiir
eine Nivellierung der Hauterwdrmung. Die maximale Hauttemperatur verringert sich bei Modell
2 durch die Durchblutung von 316,9 K um 6,0 K auf 310,9 K. Bei Modell 5, dessen verschiedene
Temperaturverteilungen in Abbildung 8.11 dargestellt sind, verringert sich durch die Gewebe-
perfusion die maximale Hauttemperatur von 322,6 K um 9,8 K auf 312,8 K.

Abbildung 8.12 zeigt, dass bei Beriicksichtigung einer leitenden Verbindung zwischen dem Aqui-
potentialring und den stromfiihrenden Innenflichen der Neutralelektrode mit einem Wider-
standswert von 65 k€ ein Minimum der maximalen Erwirmung auf der Hautoberfliche beob-
achtet werden kann. Ist der Aquipotentialring nicht mit den Innenflichen der Neutralelektrode
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< 305 K lineare Skala > 320 K

Abbildung 8.9: Zeitliche Entwicklung der Erwdarmung auf der Hautoberflaiche von Modell 5 mit
Beriicksichtigung der Durchblutung des Gewebes. Die einzelnen Bilder von links nach rechts und von
oben nach unten besitzen einen zeitlichen Abstand von 3 s. Es zeigt sich, dass der Blutfluss einen
ausgleichenden Effekt hat. Auf der einen Seite wird im Vergleich zu Abbildung 8.8 die maximale
entstehende Temperatur am Neutralelektrodenrand verringert. Weiterhin stellt sich diese Maximal-
temperatur bereits nach 24 s auf einen konstanten Wert von 312,8 K ein, der bis zum Ende der
Simulation beibehalten wird. Dariiber hinaus findet aber auch eine Erwdrmung der Hautschicht
durch den Blutfluss statt, da die Bluttemperatur mit 310 K iiber der Anfangshauttemperatur von
305 K liegt. Innerhalb weniger Sekunden erreicht die Hautoberflaiche neben der Auflageflache der
Neutralelektrode eine konstante Temperatur von ca. 308 K. Die Hauttemperatur erreicht nicht ganz
die Bluttemperatur von 310 K, da von der Hautoberflache kontinuierlich Warme an die kéltere Um-
gebung mit 293 K abgegeben wird.

verbunden, so ergibt sich eine maximale Erwarmung von 0,278 K/s im Gegensatz zu 0,243 K/s
bei einer leitenden Verbindung. Dies entspricht einer Reduktion der maximalen Erwdrmung um
12,2 %.

8.2.5 Diskussion der numerischen Ergebnisse

Die numerischen Ergebnisse zeigen, dass durch einen zusitzlichen Aquipotentialring um die
stromfiihrenden Flichen einer Neutralelektrode die maximale Erwirmung am Elektrodenrand
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(b)

|
305 K Bild (a) und (b) 314 K
<0K Bild (c) 6 K

Abbildung 8.10: Vergleich der Temperaturverteilungen auf der Hautoberfliche von Modell 2 nach
einer Stromflussdauer von 60 s. Abbildung (a) gibt die Verteilung ohne Beriicksichtigung der Gewe-
beperfusion wieder. Bei Abbildung (b) wurde die Durchblutung beriicksichtigt. Abbildung (c) gibt
die Differenz zwischen den Abbildungen (a) und (b) wieder. Dabei wurde die Farbskala so normiert,
dass nur die Bereiche eine von dunkelblau verschiedene Farbe haben, bei der die Endtemperatur
von Abbildung (a) liber der von Abbildung (b) liegt. Dies veranschaulicht, in welchen Bereichen die
Temperatur bei Vernachlassigung der Gewebeperfusion iiberschatzt wird. Abbildung (b) verdeutlicht
den ausgleichenden Effekt der Gewebedurchblutung. Zum einen wird die Maximaltemperatur an den
Elektrodenriandern reduziert, zum anderen erwarmt sich die Haut unter der Elektrode, die nicht direkt
mit der kiihleren Umgebung von 293 K in Verbindung steht, von dem Startwert von 305 K annahernd
auf die Bluttemperatur von 310 K. Die Hydrogelschicht hinterlasst dadurch einen ,Abdruck” auf der
Hautoberflache.

reduziert wird. Damit konnten die experimentell gefunden Eigenschaften des neuen Neutralelek-
trodendesigns numerisch bestéitigt werden. Eine zuséitzliche Reduktion der Erwidrmung scheint
méglich zu sein, wenn der Aquipotentialring mit den stromfiihrenden Innenfliichen der Neutral-
elektrode tiber einen geeigneten Widerstand verbunden wird.

Weiterhin ergaben sich bei den numerischen Berechnungen auch Tendenzen fiir die maximale
Erwarmung beziiglich der Unterschiede in den betrachteten physiologischen Parametern. Die
thermodynamische Berechnung der Modelle 5 und 8 ergab im Vergleich mit den anderen Model-
len die maximal beobachtete Erwdrmung auf der Hautoberfliche. Beide Modelle verfiigen iiber
die dickste modellierte Fettschicht von 20 mm und tiber den gemischten (Modell 5) und den
feuchten Hauttyp (Modell 8). Da der Maximalwert bei Modell 8 mit einer Zunahme von 18,4 K
tiber dem von Modell 5 mit 17,6 K liegt, spielt auch die Hautfeuchtigkeit fiir die Erwdrmung
eine wichtige Rolle.

Dass mit zunehmender Fettschichtdicke und Hautfeuchtigkeit die maximale Erwirmung am
Elektrodenrand ansteigt, zeigte sich auch in den experimentellen Studien von EDRICH UND
COOKSON (1987) und PEARCE ET AL. (1979), die insbesondere bei Frauen héhere Erwidrmungen
an den Elektrodenrédndern feststellten und dies mit der im Durchschnitt gréfleren Fettschicht-
dicke von Frauen erkldrten.

Da nach Applikation einer Neutralelektrode auf der Haut eines Patienten die von den
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305 K Bild (a) und (b) 323 K
<0K Bild (c) 10 K

Abbildung 8.11: Vergleich der Temperaturverteilungen auf der Hautoberfliche von Modell 5 nach
einer Stromflussdauer von 60 s. Die weiterfiihren Erlauterungen zu Abbildung 8.10 gelten hier analog.

Schweissdriisen abgegebene Feuchtigkeit nicht mehr verdunsten kann, ist davon auszugehen,
dass die Erwarmungsmuster auf der Hautoberfliche des Patienten den Modellen mit gemischter
oder feuchter Haut dhneln. Da die Leitfahigkeit der trockenen Haut um einen Faktor von mehr
als 60 unter der der feuchten Haut liegt, verhélt sich die trockene Haut dhnlich einem Konden-
sator: in der Hautschicht entsteht in erster Linie eine Blindleistung, die zu keiner Erwarmung
fihrt.

Die Fettschicht ihrerseits besitzt zwar nur eine im Vergleich zur Muskel- oder feuchten Haut-
schicht geringe Leitfdhigkeit, ist aber auch durch ihre kleine relative Permittivitit ein ,,schlech-
tes® Dielektrikum, so dass hier die Leistung auch {iber ihren Wirkanteil durch das Gewebe trans-
portiert werden muss. Aufgrund des bei einer dickeren Fettschicht héheren Gewebewiderstandes
sind damit auch héhere Ausgangsspannungen notwendig, um die gewiinschte Arbeitsstromstérke
zu erzielen. Dies resultiert in hSheren Potentialdifferenzen in der Hydrogel- und den Gewebe-
schichten und damit in hdheren elektrischen Feldern und ohmschen Verlusten und fithrt damit
im Endeffekt zu in einer gréfleren Erwidrmung der Hautoberfliche.

Abbildung 8.13a zeigt die zeitliche Entwicklung der Erwdrmung wihrend der ersten drei Sekun-
den des Stromflusses unter dem rechten Rand des stromfiihrenden Teils der Neutralelektrode an
vier Ubereinanderliegenden Messpunkten in der Hydrogel-, Haut-, Fett- und Muskelschicht von
Modell 7. Diese Betrachtung zeigt deutlich, dass die Warmeentwicklung in der Hydrogelschicht
am groBten ist. Diese zieht nach kurzer Zeit die Temperatur in der Hautschicht mit, bevor die
Fett- und die Muskelschicht folgen kénnen. Nach zwanzig bis dreiflig Sekunden Stromfluss ver-
schwindet dieser Effekt in der Hautschicht und die Erwdrmungskurve beginnt sich abzuflachen
(vgl. Abbildung 8.13b). Diese Darstellung verdeutlicht auch die Tatsache, dass es fiir die Berech-
nung der Erwdrmung mit der einfachen Abschitzung sinnvoll war, auch in der Hydrogelschicht
nach Punkten maximaler Erwdrmung zu suchen.

Die experimentell beobachtete Entstehung von lokalen heiflen Stellen bei einigen Probanden
wurde bereits in fritheren experimentellen Studien von EDRICH UND COOKSON (1987) und
NESSLER (1996) mit oberflichlichen Venen in Verbindung gebracht. Dieser Effekt konnte eben-
falls im Rahmen der numerischen Untersuchungen an Modell 9 nachvollzogen werden. Durch die
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Abbildung 8.12: Wird der Neutralring liber einen
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Neutralelektrode verbunden, so flieBt ein Teilstrom
tiber den Neutralring, was in einer Abnahme der
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im Vergleich zu Fettgewebe hohere Leitfahigkeit von Blut kommt es an den Stellen zu héheren
Stromdichten, an denen sich eine oberflichliche Vene in der Ndhe des Elektrodenrandes befindet.
Da oberflichennahe Venen bei Patienten durchaus vorkommen kénnen und zu betréichtlichen lo-
kalen heiflen Stellen fiihren, muss diesem schwer zu kontrollierenden Parameter in zukiinftigen
Studien besondere Bedeutung beigemessen werden. Moglicherweise muss auch die entsprechen-
de AAMI-Norm iiberarbeitet werden, da zur Zeit die zuféllige Auswahl einer Testperson mit
oberflichlichen Venen das Ergebnis der Priifung entscheidend beeinflussen kann.

Bei dem Vergleich der numerischen Verfahren hat sich gezeigt, dass das gekoppelte elektro-
thermodynamische Verfahren der einfachen Schlimmsten-Falls-Abschitzung tiberlegen ist. Der
zusdtzliche numerische Zeitaufwand fir die thermodynamische Berechnung ist anhand der langen
Rechendauer zur Losung des elektromagnetischen Problems vertretbar, da er die Qualitdt und
Aussagekraft der numerischen Ergebnisse entscheidend verbessert.

Die Beriicksichtigung der Gewebeperfusion ist eine zusétzliche Option des thermodynamischen
Algorithmus. Allerdings birgt dieser Parameter aufgrund seiner groflen physiologischen Streu-
breite einige Gefahren, wenn es um die Bewertung sicherheitsrelevanter Fragestellungen geht.
Wird in einer Studie die maximale Stromstéirke ermittelt, bei der auf der Hautoberfliche des
Modells die maximal zulissige Erwidrmung auftritt, so ergibt sich durch die Beriicksichtigung der
Perfusion eine Verschiebung dieses Wertes zu héheren Stromstérken hin. Das Problem hierbei ist,
die Perfusionsrate sinnvoll zu wéhlen, so dass Gefihrdungen fiir jeden Patienten ausgeschlossen
sind.

Es empfiehlt sich daher fiir sicherheitsrelevante Abschitzungen auf die Gewebeperfusion zu ver-
zichten, um eine gute obere Grenze zu ermitteln. Diese obere Grenze liegt immer noch deutlich
unter den Werten der Schlimmsten-Falls-Abschitzung und kann als sicher angesehen werden, da
sie die Realitdt immer noch {iberschitzt aber besser ann&dhert.

Die Berticksichtigung der Perfusionsrate bei sicherheitsrelevanten Studien wird daher als sinn-
volle Ergénzung gesehen, indem bei einigen Modellen die Gewebeperfusion in zusdtzlichen Be-
rechnungen berticksichtigt wird und die so erhaltenen Ergebnisse mit den Berechnungen ohne
Perfusion verglichen werden kénnen. So kann man ein Ma8 fiir die mégliche Uberschitzung der
Erwdrmung erhalten.

Im Vergleich mit den experimentellen Ergebnissen der klinischen Studie zeigten sich in der nume-
rischen Betrachtung eine deutliche Uberschiitzung der ermittelten Maximaltemperaturen selbst
bei Verwendung des thermodynamischen Algorithmus. Dabei muss allerdings berticksichtigt wer-
den, dass in der klinischen Studie eine geringere Stromstédrke durch die Probanden verwendet
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wurde und die numerischen Ergebnisse dementsprechend herunterskaliert werden miissen. Nach
NESSLER ist dabei so zu verfahren, dass sich die Temperaturskalierung durch die Quadrate der
beiden Stromstérken ergibt. Berticksichtigt man die mittlere Stromstirke von 0,7 A in der kli-
nischen Studie und von 1 A in der numerischen Studie, so ergibt sich ein Skalierungsfaktor von
2 fir die Temperaturwerte. Die durchschnittliche Erwarmung von 12,5 K wiirde sich dadurch
reduzieren auf 6,3 K, was allerdings immer noch iiber dem experimentell ermittelten Durch-
schnittswert von 3,4 K liegt.

Betrachtet man in diesem Zusammenhang die Ergebnisse der thermodynamischen Berechnungen
mit Gewebeperfusion, so zeigt sich, dass sich bei Beriicksichtigung der Durchblutung die berech-
nete maximale Erwdrmung in etwa halbiert. Die Temperaturzunahmen lagen dabei bei Modell
2 bei 5,9 K und bei Modell 5 bei 7,8 K. Legt man diese Werte fiir die Skalierung zugrunde so
ergeben sich als skalierte Werte 3,0 K und 3,9 K, die in der Gréflenordnung der experimentell
bestimmten Werte liegen und dann auch im Rahmen der zuldssigen Erwirmungsgrenzwerte der

AAMI HF18-Norm liegen (AAMI, 2001).

Die numerische Methode liefert damit dem Experiment gleichwertige Aussagen. Dies gilt auch
fir das Erwarmungsmuster auf der Hautoberfliche, welches sich bei Berticksichtigung der Gewe-
beperfusion den experimentell ermittelten Wérmebildern annihert (vgl. dazu die Abbildungen
8.10 und 8.11 mit 8.4). Vernachlissigt man die Perfusion wird dieser Effekt nicht so deutlich.

Die numerische Feldrechnung kann bei dieser Art von Problemen einen wertvollen Beitrag leisten,
indem sie vor klinischen Studien eingesetzt wird, um a priori Aussagen {iber die Auswirkungen
von Modifikationen an Geometrie, Material und technischem Aufbau auf das Erwirmungsmuster
zu erhalten. Unglinstige Designs kénnen dadurch bereits in einem friihen Stadium eines Projektes
erkannt und vor aufwindigen experimentellen Studien ausgeschlossen werden, was Zeit und
Kosten spart. Das numerische Modell liefert fiir die zu erwartende Erwarmung zwar nicht die
notwendige physiologische Streubreite, die sich nur in klinischen Studien ermitteln ldsst, gibt
aber dennoch wertvolle Anhaltspunkte, die die Entwicklung und Konzeptionierung erleichtern.
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Abbildung 8.13: Erwdrmung an vier iibereinanderliegenden Punkten unter dem rechten Rand der

Neutralelektrode bei Modell 7 in den ersten fiinf Sekunden des Stromflusses (a) und wéhrend dreiBig

Sekunden (b). Am starksten erwarmt sich die Hydrogelschicht, die nach kurzer Zeit die Temperatur in

der Hautschicht , mitzieht", bevor die Fett- und die Muskelschicht folgen kénnen (a). Nach zwanzig
bis dreiBig Sekunden Stromfluss verschwindet dieser Effekt in der Hautschicht (b).

8.3 Neutralelektroden fiir Kleinkinder

8.3.1 Vorteile einer Verkleinerung der Elektrodenflache

Die Berticksichtigung der AAMI HF-18 Norm fiihrt anhand von experimentellen Studien und
anderen Erfahrungswerten zu einer sicheren Mindestgréfie fiir Neutralelektroden. Die gewdhlten
Dimensionen sind aber fiir eine Applikation an Kleinkindern und Babys ungeeignet, da aufgrund
der Grofle der Neutralelektrode diese nicht beliebig an Armen oder Beinen aufgeklebt werden
kénnen. Im Gegensatz zu Anwendungen bei Erwachsenen werden bei operativen Eingriffen an
Kleinkindern generell geringere Stromstirken des Hochfrequenzgenerators verwendet,.

Die AAMI HF-18 Norm sieht bei Tests von Neutralelektroden fiir Kinder nur eine mittlere
Stromstirke von 500 mA (£10%) vor, im Gegensatz zu 700 mA bei Erwachsenen (AAMI, 2001).
In Anlehnung an Neutralelektroden fiir Erwachsene darf eine Neutralelektrode fiir Kleinkinder
nach einer Gesamtstromflussdauer von 60 s ebenfalls keine Erwdrmung {iber 6 K an irgendeinem
beliebigen Punkt auf der Hautoberfliche zeigen. Da die zu erwartende Erwérmung nach NESSLER
(1999) proportional zum Quadrat der Stromstérke ist, ergibt sich mit dieser Annahme, dass
den Vorgaben entsprechend die zu erwartenden Erwirmungen bei Verwendung einer mittleren
Stromstérke von 500 mA nur etwa halb so grof3 sind, wie bei einem Teststrom von 700 mA.

Dadurch ergibt sich die Moglichkeit, dass bei einer geringeren Stromstédrke in der klinischen
Applikation die Elektrodenfliche gefahrlos unter Einhaltung der vorgeschriebenen Sicherheits-
grenzwerte verkleinert werden kann. Zur Ermittlung dieser minimalen Elektrodenfliche kénnten
nun in zahlreichen experimentellen Untersuchungen Prototypen mit unterschiedlichen Skalierun-
gen an Probanden getestet werden.

Im Gegensatz zu aufwindigen experimentellen Untersuchungen wird im folgenden gezeigt, wie
mit Hilfe des gekoppelten elektro-thermodynamischen Verfahrens diese minimale Elektroden-
flache ermittelt werden kann.
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(a) (b)

Abbildung 8.14: Geometrie der Neutralelektrode bei unterschiedlichen Skalierungen. Bild (a) zeigt

die Neutralelektrode (rot) auf der Hydrogelschicht (tiirkis) und der Haut (rosa) mit einem Skalie-

rungsfaktor von 40 % im Vergleich zur urspriinglichen ElektrodengréBe von 100 % auf der rechten
Seite in Bild (b). Die Dicke des Neutralringes wurde in beiden Fillen konstant gehalten.

Gewebe / Material Dicke Anfangstemperatur

in mm in K
Aluminium 0,025 302
Hydrogel 0,35 305
Haut 0,4 305
Fett 2,5 307
Muskel 50,0 310

Tabelle 8.3: Dicke der einzelnen Gewebeschichten und Materialien des Kleinkinderoberschenkelm-
odells, sowie die Anfangstemperaturen der einzelnen Gewebeschichten fiir die thermodynamische
Berechnung fiir das Erwachsenen- sowie das Kleinkindermodell.

8.3.2 Numerisches Modell und Rechenstrategie

Die numerischen Untersuchungen wurden analog zum Modell fiir Erwachsene an einem qua-
derférmigen Gewebeblock durchgefiihrt, der aus einer Muskel-, Fett- und Hautschicht aufgebaut
ist. Der Block besitzt eine Breite von 180 mm, eine Linge von 400 mm und eine Hohe von
52,9 mm. Weitere Modellparameter finden sich in den Tabellen B.1, B.4 und 8.3. Besonderhei-
ten beim Aufbau des Gewebeblockes ergeben sich durch die unterschiedliche Dicke von Haut
und Fettgewebe bei Kleinkindern im Vergleich zum Erwachsenen. Wie Tabelle 8.3 zeigt, ist z.
B. die Haut mit 0,4 mm im Vergleich zu 2 mm beim Erwachsenen um den Faktor 5 diinner. Als
Hauttyp wurde der Mischtyp zwischen feuchter und trockener Haut angenommen.
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Skalierung Knotenpunkte Stromstérke Leistung Erwdrmung  Erwirmung

Hydrogel Haut ,» Worst-Case® H3

in A in W in K in K

40 % 698 152 0,714 0,359 43,6 30,2
50 % 697878 0,716 0,264 21,8 14,0
60 % 733320 0,725 0,225 12,5 7,8
70 % 788256 0,716 0,207 8,0 5,0
80 % 887040 0,729 0,191 6,2 4,3
90 % 976 248 0,715 0,178 5,7 3,6
100 % 1092000 0,733 0,151 5,4 2,9

Tabelle 8.4: Ergebnisse der Berechnungen des Kinderoberschenkelmodells. Fiir jede berechnete Elek-
trodenskalierung sind die Gesamtanzahl der Gitterknotenpunkte des numerischen Modells angegeben.
Ein MaB fiir die Qualitat der numerischen Ldsung ist die Stromstarke durch die Hydrogelschicht des
Modells, die dem Spitzenwert der eingeprigten Stromstarke von 776 mA entsprechen muss. Die in
der Hautschicht umgesetzte Leistung gibt einen Hinweis auf die zu erwartende Erwarmung und wird
fiir die Berechnung der Schlimmsten-Falls-Abschatzung bendtigt. Die angegebenen Erwdrmungen
geben die maximalen gefundenen Temperaturunterschiede am , heiBesten” Punkt der Hautoberflache
an. Zul3ssig ist eine maximale Erwarmung um 6 K. Danach richtet sich dann die kleinstmégliche
Elektrodenskalierung.

Die aktive Elektrode befindet sich wie in den bereits vorgestellten Oberschenkelmodellen fiir
Erwachsene in einem Abstand von 260 mm vom Elektrodenmittelpunkt. Die Gréfle der Neu-
tralelektrode wurde ausgehend von den geometrischen Dimensionen der Erwachsenenelektrode
nach Abbildung 8.2 sukzessive verkleinert. Dabei wurden die beiden L&ngendimensionen vor
jeder neuen Berechnung jeweils um den gleichen Skalierungsfaktor verringert. Die Dicke der
Neutralelektrode blieb dabei konstant, genauso wie die Breite des Neutralringes, da es aus pro-
duktionstechnischen Griinden nicht moglich ist, diesen Ring als Stanzteil diinner zu fertigen,
ohne dessen Stabilitdt bei der klinischen Applikation zu gefdhrden. Die absolute Skalierung der
Elektrode wurde ausgehend von der Anfangsgréfie 100 % in Schritten von 10 % bis auf 40 %
verringert. Abbildung 8.14 zeigt die numerischen Neutralelektrodenmodelle mit einer Skalierung
von 40 % im Vergleich zur Ausgangsgrofe von 100 %.

Das Gitter des numerischen Modells wurde im Unterschied zum Erwachsenenmodell den unter-
schiedlichen Skalierungen der Neutralelektrode automatisch angepasst. Die Netzlinien wurden
passend zur gewihlten Skalierung an den Réndern der Neutralelektrode verdichtet, um eine gute
numerische Approximation zu ermdglichen und auch bei einer kleinen Skalierung die Elektroden-
geometrie moglichst gut wiederzugeben. Aufgrund der unterschiedlichen Netzstrukturen ergaben
sich bei den einzelnen Modellen verschieden grofle Gesamtanzahlen an Gitterpunkten zwischen
700000 Knotenpunkten bei einer Skalierung von 40 % und bis zu 1100000 Knotenpunkten bei
einer Skalierung von 100 %.

Als MaB fiir die Qualitdt der numerischen Loésung wurde wiederum der Gesamtstrom durch die
Hydrogelschicht und den Gewebeblock tiberwacht, der der eingeprigten Stromstérke entsprechen
muss. Aufgrund der groflen Gitterschrittweitenunterschiede, die aufgrund der Modellierung der
sehr diinnen Hydrogel- und Aluminiumschicht notwendig waren, zeigte sich, dass sich erst bei
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einer sehr groffen Anzahl an Iterationsschritten (> 20000) ein zufriedenstellender Wert der
Gesamtstromstirke durch die Hydrogelschicht ergab. Es wurden daher fiir jedes Modell wie
beim Erwachsenenmodell 25000 Iterationsschritte berechnet. Eine weitere Erhéhung der Itera-
tionsschritte auf 50000 brachte am Beispiel des Modells mit der Skalierung von 100 % keine
wesentliche Verbesserung der Losung, so dass auf eine weitere Erh6hung der Iterationsschritte
verzichtet wurde. Tabelle 8.4 zeigt, dass die berechneten Gesamtstromstérken durch die Hydro-
gelschicht stets unter der anregenden Stromstérke liegen, die Abweichungen aber nicht mehr als
9,2 % betragen und somit in einem akzeptablen Rahmen liegen.

Die Rechenzeiten betrugen je nach Dimension des Gitternetzes zwischen 72 h und 96 h auf einer
IBM SP-SMP mit 512 MHz bei einem Hauptspeicherbedarf von maximal 1 GB. Die Rechenzei-
ten des thermodynamischen Loésers betrugen ungefihr 6 h. Die Stromflussdauer von 60 s wurde
in 240 Einzelschritte von je 0,25 s Dauer aufgeteilt und mit dem impliziten Verfahren berechnet.

Der vorgeschriebene Mittelwert des Teststromes betrigt 500 mA (effektiv) mit einer zuléssigen
Schwankung von 10 % (AAMI, 2001). Bei einer konservativen Abschitzung empfiehlt es sich,
die zuldssige Obergrenze des Teststromes zu wihlen. Man erhélt so bei Annahme eines maximal
moglichen Mittelwertes von 550 mA eine Maximalamplitude von 776 mA, die als Eingabepara-
meter zur Berechnung der Verlustleistung im Frequenzbereich diente.

Auf die Losung des elektromagnetischen Feldproblems folgte analog zum Erwachsenenmodell
eine Schlimmsten-Falls-Abschitzung der Erwidrmung durch Einsetzen der berechneten Verlust-
leistung in Gleichung (4.8), bevor diese in einem zweiten Schritt fiir den thermodynamischen
Algorithmus verwendet wurde. Bei der thermodynamischen Berechnung wurde die Gewebeper-
fusion nicht berticksichtigt.

8.3.3 Ergebnisse der numerischen Berechnung

Die in der obersten Hautschicht (gemischter Hauttyp) deponierte Leistung steigt nach Tabelle 8.4
bei Verkleinerung der Elektrodenfliche stetig an, da bei Verkleinerung der Elektrodenfliche die
durchschnittliche Stromdichte bei konstantem Gesamtstrom notwendigerweise ansteigen muss.
Die Punkte mit maximaler Energieabsorption wurden auf der Hautoberfliche und in den an-
grenzenden Voxeln der Hydrogelschicht gesucht und zur Berechnung der Hauttemperatur mit
der Schlimmsten-Falls-Abschitzung nach Gleichung (4.8) verwendet. Sie sind in Tabelle 8.4
aufgefiihrt. Wie erwartet liegen diese Werte deutlich iiber den mit dem thermodynamischen
Algorithmus berechneten Hauttemperaturen.
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305K > 325K

Abbildung 8.16: Maximale Hauttemperatur bei Verkleinerung der Neutralelektrodenflache. Die ein-

zelnen Bilder zeigen die erreichte Maximaltemperatur nach 60 s Stromfluss bei unterschiedlichen

Skalierungen der Neutralelektrode. Bei Verkleinerung der Elektrodenflache wird die Warmeverteilung

zunehmend unsymmetrischer und es ergeben sich heiBe Stellen auf der der aktiven Elektrode (hier:
rechts) zugewandten Seite.

Nach den geltenden Vorschriften (AAMI, 2001) liegt die maximal zulissige Erwirmung nach
einer Stromflussdauer von 60 s bei 6 K. Anhand der Werte aus Tabelle 8.4 ergeben sich dadurch
unterschiedliche zuléssige Elektrodenskalierungen je nach verwendeter Temperaturabschitzungs-
methode. Bei Betrachtung des Schlimmsten-Falls wird dieser Grenzwert schon bei einer Skalie-
rung von 80 % iiberschritten, wohingegen die thermodynamische Betrachtung eine Skalierung
zwischen 60 % und 70 % zulésst (siehe auch Abbildung 8.15).

Abbildung 8.16 zeigt die Temperatur auf der Hautoberfliche nach einer Stromflussdauer von
60 s. Die Ergebnisse zeigen, dass bei einer Verkleinerung der Elektrodenfliche neben der Zu-
nahme der maximalen Hauttemperatur nach und nach die symmetrisierende Wirkung des Neu-
tralringes verloren geht. Dieser Effekt ist bereits bei einer Skalierung von 80 % erkennbar. Die
aktive Elektrode befindet sich hierbei rechts von der abgebildeten Neutralelektrode. Wie bereits
in Tabelle 8.4 gezeigt, steigen die maximalen Hauttemperaturen bei Verkleinerung der Elektro-
denfliche an. Dabei zeigen sich die maximalen Erwidrmungen insbesondere an der der aktiven
Elektrode zugewandten (hier: rechten) Seite der Neutralelektrode. Eine Besonderheit ist an der
linken Stromriickfithrung der Neutralelektroden mit einer Skalierung von 40 % und 50 % in Ab-
bildung 8.16 zu erkennen. Die Berechnungen ergaben hier die Entstehung einer weiteren ,,heiflen“

Stelle.
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8.3.4 Diskussion der numerischen Ergebnisse

Die in Tabelle 8.3 angegebenen Anfangstemperaturen der einzelnen Materialien und Gewebty-
pen zeigten in der thermodynamischen Berechnung einen Nebeneffekt. Aufgrund der geringen
Dicke der Hautschicht, trugen die hoheren Anfangstemperaturen der Fett- und Muskelschicht zu
einer zusitzlichen Erwirmung der Hautoberfliche bei. Dieser Effekt war bei der Berechnung des
Erwachsenenschichtmodells aufgrund der gréfleren Hautdicke kaum zu beobachten. Die Elektro-
de ihrerseits fiihrte zu einer lokalen Verzogerung der Erwirmung wie dies insbesondere in der
Elektrodeninnenfliche bei den Skalierungen 100 % und 80 % bei Abbildung 8.16 zu sehen ist.

Da die Anfangswirme aus der tieferliegenden Fettschicht w#hrend der Simulationszeit die
dariiberliegende diinne Hautschicht mit erwarmt, ergibt sich dadurch ein zusétzlicher Beitrag fiir
die Hauttemperatur am Simulationsende. Dadurch wird die Erwidrmung an der Hautoberfliche
generell um ca. 2 K tiberschéitzt. Man kann daher in diesem Fall von einer htheren Anfangstem-
peratur der Haut ausgehen. So ergibt sich nach Tabelle 8.4, dass die nach der Norm maximal
zulédssige Erwirmung rechnerisch von 6 K auf 8 K erhtht werden kann und dadurch auch kleine-
re Skalierungen der Neutralelektrode als bisher angenommen die Grenzwerte einhalten dirften.
Durch die gewéhlten Anfangstemperaturen wurde daher die absolute Erwérmung auf der Hauto-
berfliche eher tiberschétzt.

Eine Alternative zu dieser Betrachtung wire eine Anpassung der Anfangstemperaturverteilung,
indem entweder eine hthere Hauttemperatur oder ein angepasster Temperaturabfall in der dar-
unter liegenden Fett- und Muskelschicht angenommen wird. Die Bertiicksichtigung der Gewebe-
perfusion in diesem Beispiel wire eine andere Alternative, bei der zunichst ohne Stromfluss so
lange gerechnet wird, bis das Modell mit der Umgebung im therodynamischen Gleichgewicht
ist, d. h. sich von selbst ein Temperaturgradient in den Gewebeschichten eingestellt hat.

Im Sinne einer konservativen Abschitzung unter besonderer Beriicksichtigung der Patientensi-
cherheit ist diese Auffilligkeit aber kein Nachteil, da dadurch die Erwirmung stets tiberschitzt
wird, wenngleich weitere Moglichkeiten zur Verbesserung der numerischen Modellierung im vo-
rigen Absatz aufgezeigt wurden.

8.4 Abschitzung der Erwidrmung der Kleinkinderelektrode

8.4.1 Theoretische Vorarbeiten

Bereits im Jahre 1982 wurde von WILEY UND WEBSTER eine theoretische Arbeit vorgestellt, die
sich mit dem Problem der Randerwidrmung bei Neutralelektroden beschéftigte. Dabei konnten
erstmals die von OVERMYER ET AL. (1979) aufgestellten Vermutungen iiber Stromdichtenzunah-
men am KElektrodenrand und damit verbunden die Entstehung von héheren Hauttemperaturen
analytisch mit einem einfachen Neutralelektrodenmodell nachgewiesen werden.

Abbildung 8.17 zeigt die dabei angenommene rotationssymmetrische Geometrie mit einer kreis-
runden Neutralelektrode mit Radius a, die auf ein unendlich grofles leitfahiges Medium auf-
gebracht ist. Die fiir einen Stromfluss notwendige Gegenelektrode befindet sich in unendlicher
Entfernung in negativer z-Richtung. So bleibt die Rotationssymmetrie erhalten und das Problem
kann in Zylinderkoordinaten formuliert werden.
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z A
Kreisrunder Kontakt
Abbildung 8.17: Schnittbild der analysier-
ten kreisrunden Neutralelektrode. Eine kreis-
runde Scheibe mit dem Radius a ist auf einer '
unendlich groBen leitfahigen Platte aufge-
bracht. Die Gegenelektrode wird in unendli-

cher Entfernung angenommen, um das Pro-
blem in Zylinderkoordinaten I6sen zu kénnen
(WILEY & WEBSTER, 1982).

Leitfahiges Medium

Es sei angenommen, dass die Neutralelektrode auf dem konstanten quasistatischen Potential Vj
liege. Um die korrespondierende Stromdichte J(r,z) zu berechnen muss die Laplacegleichung
allgemein fiir das Potential V

AV =0
mit den gegebenen Randbedingungen
V=W fur z=0,r<a
a—V=0 fir z=0,r>a
0z

gelost werden. Dieses Problem stellt ein klassisches Problem mit gemischten Randbedingungen
dar, fiir das exakte Lésungen bekannt sind (JACKSON, 1975). Die allgemeine Lésung fiir dieses
Problem besteht aus einer Superposition von Exponential- und Besselfunktionen nullter Ordnung
und kann als geschlossener Ausdruck angegeben werden:

V(r,z) = /Om A(k)e ™ A gy (kr)dk: (8.1)

wobei Jy eine Besselfunktion ist und %k ein Parameter mit der Einheit einer inversen Lange.
Wendet man die Randbedingungen auf Gleichung (8.1) an, so ergibt sich als Losung:

2 2
Vir,z) = ﬂsin_1 ¢ . (8.2)
m

\/(r—a)2+22+\/(1‘+a)2+22

Berticksichtigt man die Leitfdhigkeit o des Mediums so erfolgt die Ableitung der Stromdichte

—

J(r,z) durch einfache Anwendung von

J(r,z) = cE(r,z) = —oVV(r,z) .
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Abbildung 8.18: Skizze einer kreisrunden Neu-
tralelektrode mit dem Gesamtradius a. Im weiteren
Verlauf der Herleitung der Naherungslosung wird
jeweils ein Teilgebiet der Elektrodenflache betrach-
tet und im Text zwischen dem Innenkreis mit Ra-
dius b und einem Aussenring unterschieden.

Diese Ableitung fiihrt schliefilich zur Stromdichte in z-Richtung an der Kontaktstelle zwischen
Neutralelektrode und leitfihigem Medium (WILEY & WEBSTER, 1982):

20V 1
T a2 — 2

J.(r,0) = (8.3)

8.4.2 Berechnung der Gesamtstromstirke durch die Elektrode

Um die Stromdichte in z-Richtung an der Unterseite der kreisrunden Neutralelektrode mit dem
Radius a in Abhédngigkeit vom Abstand r zum Kreismittelpunkt anzugeben kann nach WILEY
UND WEBSTER bei einer mittleren Stromdichte Jy Gleichung (8.3) umgeformt werden zu

L) = —D (8.4)

2,/1-1%

Gleichung (8.4) zeigt, dass die Stromdichte an den Rindern der Neutralelektrode ansteigt, die
Innenfliche einer Neutralelektrode nur einen kleinen Beitrag zur Gesamtstromaufnahme leistet.
In Abbildung 8.19a wird dieser Zusammenhang veranschaulicht. Nach Gleichung (8.4) steigt die
Stromdichte an den Elektrodenrdndern tiber alle Grenzen. Dies stellt eine Abweichung von den
tatsdchlichen Verhéltnissen dar, die von WILEY UND WEBSTER mit der Tatsache begriindet
wird, dass in ihrem Modell die Neutralelektrode als unendlich diinn angenommen wurde und
an den Elektrodenkanten ein abrupter Potentialsprung als Randbedingung angenommen wurde,
der so in der Realitdt nicht vorkommt.

Zur Berechnung des Gesamtstromes durch die Neutralelektrode in z-Richtung muss Gleichung
(8.4) tiber die Kreisfliche integriert werden. Fiir den weiteren Verlauf der Herleitung wird hier-
bei eine Variable b als Radius eines beliebigen Innenkreises innerhalb der Elektrodenfliche als
Integrationsgrenze eingefiihrt (siche Abbildung 8.18). Der Teilstrom I; durch eine beliebige In-
nenkreisfliche der kreisrunden Elektrode mit Radius a berechnet sich dann zu
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b p27
I(b)z// J.(r) - rdedr
00
Jocz/b/27T r
= —— ————dpdr
2 Jody V@2

J b
_ La%/ L
2 0 Va2 —r2

b
= Joparm - {— a? — 7‘2]
0

:J[)(MT-<— a2—bz—i—a)

a

b2
= Jpa’m - (1 —4/1— —2> mit b<a. (8.5)

Die mittlere Stromdichte Jy ist identisch zum Gesamtstrom Iy geteilt durch die Gesamtkreis-
fliche ma? gemiB

ma?

Mit dieser Identitit kann Gleichung (8.5) umgeformt werden zu

1(6)=1I - (1 41— Z-Z) . (8.7)

Wie aus Gleichung (8.7) ersichtlich ist, ergibt sich im Grenzfall b = a fiir I(b = a) wie erwartet
der Gesamtstrom Ij.

8.4.3 Veranschaulichung der Stromaufnahme der kreisrunden Elektrode

Mit Hilfe von Gleichung (8.7) kann die Stromaufnahme einzelner Teilbereiche der Elektrode
genauer untersucht werden. Im folgenden sei

1(b) b2
AI=I—=<1— 1——> (8.8)

0 a?

das Verhéltnis aus Strom [(b) durch einen beliebigen Elektrodeninnenkreis mit Radius b zum
Gesamtstrom Iy. In Abbildung 8.19 ist dieses Verhiltnis gegen das Verhéltnis aus Innenkreis-
radius b zu Elektrodenradius a aufgetragen. Es zeigt sich, dass ein Grofiteil des Gesamtstromes
tiber eine relativ kleine Flache in den Auflenbereichen der Neutralelektrode fliefit.

Dies wird verdeutlicht, wenn man Gleichung (8.8) nach dem Radienverhiltnis &, = (—ZZ auflost:

b=l IZ(I=AI. (8.9)

a
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Abbildung 8.19: Vergleich zwischen Stromdichte (a) und Gesamtstrom (b) einer kreisférmigen Neu-
tralelektrode mit Radius a in Abhangigkeit vom Abstand b zum Mittelpunkt. Auf der linken Seite ist
das Verhiltnis zwischen punktueller Stromdichte zur iiber die Gesamtfliche gemittelten Stromdichte
iiber den Abstand aufgetragen. Die rechte Seite zeigt das Verhéltnis zwischen Strom durch einen
beliebigen Innenkreis und Gesamtstrom iiber dem Abstand. Anhand Abbildung (b) ist zu erkennen,
dass der groBte Anteil des Gesamtstromes in den Aussenbereichen der Elektrode iiber eine relativ
kleine Flache gesammelt wird. Der Kurvenverlauf zeigt, dass im Innenkreis mit einem Radius von
0,866 - a nur die Halfte des Gesamtstromes flieBen.

Die angegebenen Formeln zeigen, dass der Innenbereich einer Neutralelektrode recht ineffektiv
bei der Stromaufnahme ist und nur einen kleinen Beitrag leistet. Gleichung (8.9) zeigt z. B.,
dass sich bei einem Stromverhéltnis von Al = 0,5 ein Radienverhéltnis von k, = @ = 0,866
ergibt. Dies bedeutet, dass tiber den Innenkreis einer Elektrode mit einem Radius von 0,866 - a

lediglich die H&lfte des Stromes fliefit.

8.4.4 Zusammenhang zwischen Stromdichte und Erwirmung

Die Stromdichte und damit die Erwdrmung nehmen bei einer Verkleinerung der Elektrode zu.
Der Zusammenhang zwischen Erwirmung unter der Neutralelektrode mit dem Quadrat der
Stromstérke ldsst sich bei konstanter Elektrodenfliche mit Gleichung (4.7) und (8.6) verstehen.
Entscheidend ist daher die Abhéngigkeit der Stromdichte entweder von der Stromstédrke oder
von der Elektrodenskalierung.

Ist nach Gleichung (8.6) die Stromstéirke konstant und die Elektrodengréfie variabel so besteht
eine Proportionalitit der Stromdichte beziiglich des Quadrates der Elektrodenskalierung. Da-
mit ldsst sich mit Gleichung (8.6) ein einfacher Zusammenhang herleiten, der die entstehende
Erwdrmung am Rand der Elektrode in Abhéngigkeit vom Durchmesser der Neutralelektrode
anndhernd beschreibt.

Die deponierte Energie und damit auch niherungsweise die zu erwartende Erwirmung auf der
Hautoberfliche, ist dann proportional zum Quadrat der Stromdichte und damit nach Gleichung
(8.6) umgekehrt proportional zur vierten Potenz des Elektrodenradius a:
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Abbildung 8.20: Maximale Hauttemperatur nach einer Stromflussdauer von 60 s berechnet mit dem
thermodynamischen Algorithmus. Den beiden Ausgleichskurven liegen unterschiedliche Datenmen-
gen zugrunde. Kurve ki wurde anhand der Ergebnisse fiir die Elektrodenskalierungen s = 0,9;1,0 be-
stimmt. Kurve ko wurde fiirs = 0, 4; 1, 0 bestimmt. Die Ergebnisse zeigen, dass es fiir die Abschatzung
der kleinsten mdglichen Skalierung, bei der die Temperaturerhdhung der Haut noch unter den
zuldssigen maximalen 6 K (hier bei 311 K absolut) liegt, vorteilhaft ist, Berechnungen mit einer
kleinen und einer groBen Elektrodenskalierung durchzufiihren, um dann eine Abschitzung mittels
Gleichung (8.11) zu ermitteln. Die beiden Ausgleichsfunktionen liefern als Grenzwerte fiir s im ersten
Fall s=0,741 und im zweiten Fall s =0,658. Die Berechnungen ergaben fiir eine Skalierung von
s = 0,600 eine maximale Hauttemperatur von 312,8 K und fiir s = 0,700 eine Maximaltemperatur
von 310,0 K.

1

AT ~ JZ ~ - (8.10)

Somit 1&sst sich fiir jedes simulierte Schichtmodell eine einfache N#herungsfunktion fiir die zu
erwartende Erwirmung in Abhingigkeit des Elektrodenradius a ermitteln:

1
AT =m:— +c (8.11)

Die freien Parameter m und c¢ sind unter anderem abhingig von der gewihlten Gesamt-
stromstéirke, der Stromflussdauer und der Anfangstemperatur der Haut.

8.4.5 Vergleich mit den numerischen Ergebnissen

Nach Gleichung (8.11) besteht eine Abhéngigkeit zwischen der Elektrodengréfe und der zu er-
wartenden Maximaltemperatur. Die Funktionsparameter m und ¢ kénnen dabei anhand der nu-
merischen Ergebnisse durch eine Regressionsrechnung bestimmt werden. Abbildung 8.20 zeigt die
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Anwendung von Gleichung (8.11) auf die numerischen Ergebnisse aus Tabelle 8.4. Der Elektro-
denradius a in der Niherungsfunktions (8.11) wird im folgenden durch die Elektrodenskalierung
s ersetzt, die eine dimensionslose Gréfle darstellt. Die Parameter m und ¢ der Ndherungsfunktion
erhalten dadurch die Einheit einer Temperatur. Der Fall s = 1,0 entspricht der Ausgangsgréfie
der untersuchten Neutralelektrode.

Da die Ausgleichsfunktion nur zwei freie Paramter besitzt, genligen zu deren Bestimmung im
Prinzip nur zwei Datenpunkte. Zur Veranschaulichung dieses Zusammenhangs wurden die freien
Parameter der beiden Ausgleichskurven jeweils nur anhand von zwei Datenpunkten berechnet.
Dabei stellt, wie in Abschnitt 8.3.4 begriindet, der Parameter ¢ in Gleichung (8.11) die An-
fangstemperatur der Hautoberfliche dar. Die Regressionsrechnung ergab fiir diesen Parameter
Werte von 306,565 K und 307,183 K. Dies verwundert zunichst, da die Anfangstemperatur der
Haut nur 305 K betrug. Der héhere Wert wird durch die zuséitzliche Erwirmung der Haut durch
die Fett- und Muskelschicht verursacht, da aufgrund der sehr diinnen Haut eine Durchwirmung
wéhrend des simulierten Zeitintervalls stattgefunden hat.

Die Kurve k; in Abbildung 8.20 wurde mit Hilfe der numerischen Ergebnisse fiir die Skalierungen
s =0,9 und s = 1,0 bestimmt, die verwendeten Skalierungen fiir die Kurve ko waren s = 0,4
und s = 1,0. Kurve ko zeigt dabei eine bessere Approximation der numerischen Ergebnisse iiber
den gesamten untersuchten Skalierungsbereich der Neutralelektrode.

Geht man konservativ von einer maximal zuldssigen Erwi&rmung von 6 K aus, so ergibt sich
unter Annahme einer Anfangshauttemperatur von 305 K fiir die maximale Hauttemperatur ein
Grenzwert von 311 K. Dieser Wert wird bei Kurve kg bei s = 0,658 erreicht. Beachtet man die
zusdtzliche Hauterwdrmung durch die Fett- und Muskelschicht und nimmt als Anfangstempe-
ratur der Haut einen Wert von 307 K an, so ergibt sich mit einem Grenzwert von 313 K eine
Skalierung von s = 0,593.

8.4.6 Diskussion der Niherungslosung

Die Ergebnisse zeigen, dass es mit Hilfe von Gleichung (8.11) mdglich ist, bei geschickter Wahl
der Datenpunkte sogar mit nur zwei Werten eine gute N&herungskurve zur Wiedergabe der
maximalen Hauttemperaturen bei Verkleinerung der Neutralelektrode zu berechnen. Es zeigte
sich, dass die Ergebnisse der Regressionsrechnung die numerischen Werte besser wiedergeben,
wenn fiir die Bestimmung der Parameter m und ¢ zwei Datenpunkte gewihlt werden, die einen
grofleren Skalierungsbereich einschlieffen. Verwendet man fiir die Bestimmung der Ndherungs-
funktion alle verfiigharen Datenpunkte so ergeben sich fiir die Parameter m = 0,715 K und
¢ = 307,344 K Werte, die in guter Ubereinstimmung mit den Parametern von Kurve ko sind.

Der Vorteil dieses Verfahrens liegt in der Zeitersparnis durch die Reduktion der notwendigen nu-
merischen Datenpunkte, da weniger Modelle berechnet werden miissen. Eine sukzessive Annéhe-
rung an die zuldssige Maximaltemperatur durch wiederholtes Losen des numerischen Problems
erfordert unter Umsténden eine grofle Anzahl an verschiedenen Elektrodenmodellen. Dies 148t
sich vereinfachen, wenn wie hier vorgestellt, zunichst zwei sehr unterschiedliche Elektroden-
groflen berechnet werden und dann mit einer Ausgleichsfunktion der Grenzwert der Elektro-
denskalierung bestimmt wird. Eine weitere Modellrechnung mit der so ermittelten Elektrodens-
kalierung kann dann zur Validierung der Néherungslésung dienen.
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8.5 Wissenschaftlicher Beitrag dieser Arbeit

In diesem Kapitel wurde die Anwendung des gekoppelten numerischen thermo-elektro-
dynamischen Verfahrens an einem Beispiel aus der Elektrochirurgie dargestellt. Im einzelnen
wurde die Erwdrmung der Hautoberfliche unter der Neutralelektrode bei der monopolaren Elek-
trochirurgie untersucht. Alle Neutralelektroden miissen so konzipiert werden, dass im Betrieb
keine Verbrennungen der Haut durch zu hohe Stromdichten an den Elektrodenréndern auftreten.

Im ersten Unterkapitel wurde ein kurzer historischer Abriss iiber den Verlauf der Neutralelek-
trodenentwicklung gegeben, aus der sich die Idee einer Neutralelektrode mit Aquipotentialring
ergab. Danach wurden die giiltigen Teststandards nach der AAMI HF-18 Norm beschrieben, die
vor der Markteinfiihrung einer neuen Neutralelektrode in klinischen Studien anzuwenden sind.

Im néchsten Unterkapitel wurden zunéchst die mit dem neuen Elektrodendesign durchgefiihrten
klinischen Studien beschrieben anhand derer zehn verschiedene hochaufgeldste Schichtmodelle
eines Oberschenkels eines Erwachsenen fiir numerische Berechnungen erstellt wurden. Ziel der
numerischen Untersuchungen war es, die Ergebnisse der klinischen Studie nachzuvollziehen und
zu bestitigen. Es konnte gezeigt werden, dass der Aquipotentialring die maximale Hauttem-
peratur deutlich senkt und zu einer symmetrischeren Warmeverteilung auf der Hautoberfliche
fiihrt. Weiterhin konnten Zusammenh&nge zwischen Hautfeuchtigkeit, Fettschichtdicke und dem
Vorhandensein von oberflachlichen Blutgefdfien abgeleitet werden. Der gekoppelte Algorithmus
erwies sich der einfachen Abschitzung als tiberlegen. Die Berticksichtigung der Gewebedurch-
blutung lieferte weitere Erkenntnisse und verbesserte die numerischen Ergebnisse.

Die gewonnenen Erkenntnisse wurden im weiteren Verlauf dieser Arbeit aufgegriffen und neue
Ideen beziiglich einer weiteren Verringerung der Erwdrmung numerisch gepriift. Dabei zeigte
sich, dass durch eine leitende Verbindung des Neutralringes mit den stromfiihrenden Teilen der
Neutralelektrode die entstehende Erwérmung weiter reduzieren kann.

Mit Hilfe der gewonnenen Erkenntnisse wurde im folgenden Unterkapitel die Problematik der
Neutralelektroden fiir Kleinkinder aufgegriffen und anhand von numerischen Modellen die
kleinstmogliche Elektrodengrofie bestimmt, bei der die von der Norm vorgeschriebenen Tem-
peraturgrenzwerte noch eingehalten wurden. Ausgehend von diesen numerischen Ergebnissen
wurde im anschlieBenden Unterkapitel eine einfache Ndherungsformel zur Approximation der
maximalen Hauttemperatur abgeleitet, abhingig von der Skalierung der Neutralelektrode. Mit
dieser Niherungsformel ist es anhand weniger numerischer Modelle méglich die kleinstmagliche
Elektrodengréfie abzuschétzen, anstatt zahlreiche sukzessive Simulationsrechnungen bis zum Er-
reichen der maximal zuldssigen Hauterwdrmung durchzufiihren.

Es wurde gezeigt, dass mit Hilfe der numerischen Feldrechnung zusdtzliche Einblicke in die elek-
trodynamischen Vorgénge im menschlichen Korper gewonnen werden konnten. Mit Hilfe dieser
Einblicke ist es in Zukunft moéglich in kiirzerer Zeit Probleme im Bereich der Neutralelektroden-
entwicklung zu 16sen und die Patientensicherheit weiter zu optimieren. Die numerische Feldrech-
nung erweist sich als wertvolle Unterstitzung beim Test neuer Elektrodendesigns, da mit ihrer
Hilfe in kiirzester Zeit neue Designstudien a priori numerisch auf ihre Erwdrmungseigenschaften
hin untersucht werden koénnen, bevor aufwéindige klinische Studien durchgefithrt werden. Mit
Hilfe der in dieser Arbeit durchgefithrten Untersuchungen und gewonnenen Erkenntnisse ist es
daher moglich, die Entwicklungszeit im Bereich der Neutralelektroden zu verkiirzen und damit
auch die Kosten zu senken. Die Ergebnisse dieses Kapitels wurden bereits auf einer nationalen
Konferenz (RAISER ET AL., 2002) und in einem internationalen Journal (GOLOMBECK ET AL.,
2003) versffentlicht.
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Kapitel 9

Zusammenfassung und Ausblick

9.1 Zusammenfassung

Ziel der vorliegenden Arbeit war die Durchfiihrung feldtheoretischer Studien zur Verbesserung
der Patientensicherheit bei der Magnetresonanztomographie und der Elektrochirurgie. Beide me-
dizinische Verfahren gehdren heutzutage zu den Standardanwendungen in der klinischen Praxis.
Durch die direkte Applikation von Strémen in der Elektrochirurgie oder durch die Induktion von
Wirbelstromen im menschlichen Korper bei der MR-Tomographie kénnen Stimulationseffekte
von Muskel- und Nervengewebe, sowie die Erwirmung von Korpergewebe erzeugt werden. Diese
unerwiinschten Nebeneffekte kénnen zu irreversiblen gesundheitlichen Schiden, schlimmsten-
falls sogar zum Tod des Patienten fithren. Der Sicherheit des Patienten bei diesen medizinischen
Verfahren muss daher besondere Aufmerksamkeit gewidmet werden.

Als Alternative zu experimentellen Studien wurden in dieser Arbeit numerische Methoden zur
Berechnung elektromagnetischer und thermischer Felder im menschlichen Koérper verwendet.
Zunichst wurde die Finite-Integrations-Technik als numerisches Verfahren vorgestellt. Es wurde
gezeigt, wie mit Hilfe eines gekoppelten elektro-thermodynamischen Verfahrens zunichst die
elektrische Feldverteilung im Frequenzbereich in einem Koérpermodell berechnet und daraus
die deponierte Leistung im Gewebe bestimmt werden kann. Danach wurde gezeigt, wie mit der
Biowarmeleitungsgleichung die zeitliche Entwicklung der Temperaturverteilung im menschlichen
Korper unter Beriicksichtigung von Warmetransport durch Diffusion und Konvektion durch den
Blutfluss berechnet werden kann.

Im folgenden Kapitel wurden die dielektrischen Eigenschaften von Koérpergewebe diskutiert,
da die Kenntnis dieser frequenz- und temperaturabhingigen Groflen fiir eine numerische Mo-
dellierung unabdingbar ist. Nach einem historischen Uberblick wurden die elementaren physi-
kalischen Gréflen und Wirkungsmechanismen vorgestellt. Danach wurden mathematische Mo-
delle zur Beschreibung der frequenzabhingigen Eigenschaften von Korpergewebe beschrieben
und auf die Temperaturabhingigkeit der dielektrischen Parameter eingegangen. Die Tempera-
turabhdngigkeit ist streng genommen bei der Berechnung der Erwdrmung von Koérpergewebe zu
berticksichtigen, da sich die dielektrischen Eigenschaften so dndern kénnten, dass eine andere
elektrische Feldverteilung und damit deponierte Leistung im Gewebe resultiert. Aufgrund feh-
lender Messdaten in der Literatur musste aber auf eine weitere Betrachtung dieser Problematik
verzichtet werden.
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Eine wichtige Rolle spielt die Bewertung der numerischen Ergebnisse beziiglich ihrer physio-
logischen Wirkung im menschlichen Kérper. Aus diesem Grund wurde im folgenden Kapitel
die biologische Wirkung elektromagnetischer Felder diskutiert. Zunichst wurde eine Unterschei-
dung und Vorstellung der beiden bekannten Effekte Stimulation und Erwirmung vorgenommen
und auf physiologischer Ebene erklart. Anschliessend daran wurde gezeigt, wie Grenzwerte zum
Schutz der Gesundheit fir den Menschen abgeleitet werden. Die gingigen Grenzwerte fiir die
arbeitende Bevdlkerung und die Allgemeinbevolkerung fiir elektrische und magnetische Felder,
sowie flr die Stromdichte und die maximal zuldssige Erwirmung im Korper wurden genannt,
auch im Bezug auf die klinische Anwendung von MR-Untersuchungen .

Vor der Durchfithrung gezielter numerischer Untersuchungen war es notwendig, aus den zur
Verfligung stehenden numerischen Methoden der Finiten-Integrations-Technik diejenigen aus-
zuwihlen, die eine effiziente Ldsung der numerischen Probleme ermdglichten. Es hat sich ge-
zeigt, dass fiir die Berechnung verlustbehafteter Kérpergewebe im Frequenzbereich das Jacobi-
vorkonditionierte symmetrische biorthogonale konjugierte Gradientenverfahren am besten geeig-
net ist. Zur Berechnung der zeitlichen Temperaturverteilung ermdglichte das implizite Crank-
Nicolson-Verfahren mit einer adaptiven Zeitschrittsteuerung eine effiziente Lésung des Problems.

Im né#chsten Kapitel wurde die Erwérmung von Schrittmacherelektroden und Kabeln durch
Hochfrequenzpulse von MR-Tomographen untersucht. Zun&chst wurden eigene experimentel-
le Arbeiten mit einem Korperphantom vorgestellt. Danach wurden in einer feldtheoretischen
und numerischen Betrachtung die elektrische Feldverteilung und deponierte Leistung in 384
numerischen Modellen eines quaderférmigen Salzwasserphantom mit eingebrachten Kabeln be-
rechnet. Es zeigte sich, dass die numerisch bestimmten Erwdrmungen mit Ergebnissen aus der
Literatur tibereinstimmen. In einer weiteren Betrachtung wurde die Erw&rmung an zwei hoch-
aufgeldsten numerischen Modellen des menschlichen Korpers berechnet. Dazu wurde zum einen
ein Kopfmodell mit Tiefenhirnstimulationselektrode und ein Oberkdrpermodell mit Herzschritt-
macherelektrode in das HF-Feld eines MR-Tomographen gebracht. Anhand der numerischen
Ergebnisse wurde deutlich, dass die Aussagen aus experimentellen Phantomstudien nicht un-
eingeschriankt auf den Menschen {ibertragen werden kénnen. Die berechneten Erwdrmungen der
Elektrodenspitzen in den hochaufgeldsten Kérpermodellen lagen deutlich unter den Werten aus
Phantomstudien. Die geringere Erwirmung konnte zum einen auf die Inhomogenitit des mensch-
lichen Korpers im Gegensatz zu homogen gefiillten Phantomen und zum anderen auf die gute
Wirmekonvektion durch die Gewebeperfusion zuriickgefithrt werden. Insgesamt konnte bei kei-
nem berechneten Modell eine gewebeschidigende Erwidrmung nachgewiesen werden. Aufgrund
der Ergebnisse wird vermutet, dass fiir Patienten mit Implantaten weitaus weniger Risiken be-
stehen, als bisher angenommen. Sicherheitsbestimmungen, die allein aus Phantomexperimenten
abgeleitet werden, sind daher in Frage zu stellen.

Neben der Erwdrmung durch hochfrequente Felder wurden die Auswirkungen von gepulsten
magnetischen Gradientenfeldern im Hinblick auf die mogliche Stimulation von Muskel- und
Nervengewebe untersucht. Besondere Aufmerksamkeit wurde dem Herzmuskel gewidmet, da
eine unerwiinschte Stimulation von Herzgewebe zu Kammerflimmern und Tod des Patienten
filhren kann. Im niederfrequenten Bereich der MR-Gradienten diirfen daher keine zu grofien
Stromdichten im Herzmuskel auftreten. Mit Hilfe einer Fourierreihenentwicklung wurden zwei
typische Gradientenpulsformen explizit zerlegt, um so die Strome in einem Korpermodell be-
rechnen zu kénnen. Es konnte gezeigt werden, dass heutige Gradientensysteme in der Lage sind,
auch tieferliegende Strukturen wie den Herzmuskel im ungiinstigsten Fall zu stimulieren. Mit
dem hier vorgestellten Verfahren ist es moglich, beliebige Gradientenpulsformen zu zerlegen und
numerisch die Risiken fiir eine Stimulation von Muskel- und Nervengewebe abzuschéitzen.
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9.1 Zusammenfassung

Bei der Elektrochirurgie spielt die Erwérmung unter der Neutralelektrode eine wichtige Rolle, da
es z. B. bei schlechtem Elektrodenkontakt zu Verbrennungen der Haut kommen kann. Es wurde
daher ein numerisches Modell konzipiert, mit dem sich die Erwdrmung unter Neutralelektroden
berechnen lasst. Dabei konnte gezeigt werden, dass durch einen zusétzlichen, nicht konnektier-
ten AuBenring eine Reduktion der maximalen Erwidrmung der Hautoberfliche erreicht werden
konnte. Die Erwdrmung konnte noch weiter reduziert werden, indem der Auflenring tiber einen
Widerstand mit den stromfiithrenden Teilen der Elektrode verbunden wurde. Ein Vergleich mit
Ergebnissen aus der Literatur und einer klinischen Studie bestétigte die numerisch berechneten
Erwarmungen. Es zeigte sich, dass mit zunehmender Dicke der Fettschicht und Feuchtigkeit
der Haut eine héhere Erwarmung am Elektrodenrand erzeugt wurde. Daneben wurde bei einem
Modell mit oberflichennaher Vene eine besonders hohe lokale Temperaturerh6hung festgestellt.
Dies stellt auch in der klinischen Anwendung ein Problem dar, welches bislang noch keinen
Eingang in die relevanten Normen gefunden hat. Ausgehend von diesen Ergebnissen wurde mit
einer theoretischen Abschitzung ein Zusammenhang zwischen Elektrodengréfie und maximaler
Hauttemperatur abgeleitet, der danach numerisch bestitigt wurde. Mit dieser Abschétzung ist
es moglich die minimale Elektrodenfliche zu ermitteln, bei der die nach der Norm zuldssigen ma-
ximalen Hauttemperaturen noch nicht {iberschritten werden. Dies eréffnet neue Moglichkeiten
der Neutralelektrodenentwicklung insbesondere im Hinblick auf kleinere Kinder- und Babyelek-
troden.

Insgesamt konnte in dieser Arbeit gezeigt werden, dass es durch geschickte Auswahl und Kom-
bination der zur Verfiigung stehenden numerischen Methoden mit hochaufgeldsten Modellen
des menschlichen Kérpers moglich ist, wichtige Fragestellungen aus der medizinischen Praxis
zu beantworten und durch neue Einblicke die Sicherheit fiir Patienten bei der Magnetresonanz-
tomographie und Elektrochirurgie zu verbessern. Die numerischen Methoden, gekoppelt mit
feldtheoretischen Abschitzungen, zeigten sich zum Teil sogar experimentellen Studien durch ei-
ne bessere Genauigkeit und durch eine héhere Relevanz der Ergebnisse iiberlegen. Sie sind damit
auf dem Gebiet der Patientensicherheit auch in Zukunft ein unverzichtbares Werkzeug in der
Medizintechnik.
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Zusammenfassung und Ausblick

9.2 Ausblick

Abschlieflend sollen noch einige Anregungen zur Weiterarbeit gegeben werden.

Wie oben beschrieben, musste aufgrund fehlender Daten auf eine Beriicksichtigung der Tempera-
turabhingigkeit der dielektrischen Parameter verzichtet werden. Dies kann zu Ungenauigkeiten
in den Ergebnissen fiihren, sobald die Erwérmungen im Gewebe einige Kelvin iibersteigen, da
sich dann die Anderung der dielektrischen Parameter immer stirker auf die Feldverteilung aus-
wirkt. Es kann daher unter Umstdnden notwendig werden, die thermodynamische Berechnung
nach einiger Zeit zu unterbrechen und mit angepassten Parametern das elektrodynamische Feld-
problem erneut zu l6sen.

In diesem Zusammenhang kann im Rahmen der thermodynamischen Berechnungen in Zukunft
auch eine genauere Betrachtung der Gewebeperfusion notwendig sein. Die in dieser Arbeit ange-
nommenen Perfusionswerte stellen einen Durchschnittswert dar. Bei der Erwarmung von Korper-
gewebe nimmt in den betroffenen Bereichen aufgrund thermoregulatorischer Massnahmen des
Organismus die Durchblutung zu. Diesen Effekten kénnte in zukiinftigen numerischen Simula-
tionen Rechnung getragen werden.

Im Rahmen einer tierexperimentellen Studie miisste {iberpriift werden, ob die numeri-
schen Ergebnisse der geringen berechneten Erwirmung von Schrittmacherelektroden in MR-
Tomographen in der beschriebenen C-Magnetkonfiguration bestitigt werden kénnen. Denn es
besteht, aufgrund der Ergebnisse dieser Arbeit, die berechtigte Hoffnung, dass in Zukunft alle
Patienten mit einem Herzschrittmacher bei entsprechender Lagerung ohne Gefahr einer gewe-
beschidigenden Erwirmung der Elektrodenspitze in einem MR-Tomographen mit C-Magneten
untersucht werden kénnen.

Die Berechnung der durch Gradientenfelder induzierten Strome mit Hilfe einer Fourierreihenzer-
legung ist ein funktionierendes, aber sehr aufwindiges numerisches Verfahren. Die Fourierzerle-
gung war notwendig, da durch restriktive Stabilitdtskriterien die Losbarkeit langsamer transien-
ter Vorgénge im Zeitbereich bisher eingeschriankt war. Die Entwicklung neuer Losealgorithmen
im Zeitbereich kénnten hier eine Méglichkeit darstellen, die sich als effiziente Alternative zur
Fourierreihenzerlegung erweisen kénnte.

Im Bereich der Elektrochirurgie sind aufgrund der numerischen Resultate weitere Modellrech-
nungen denkbar, bei denen insbesondere der Elektrodenform weitere Aufmerksamkeit zukommt.
Das Hinzufiigen eines Auflenrings um die stromfiihrenden Flachen ergab eine Reduktion der ma-
ximalen Erwirmung der Hautoberfliche. Durch eine ohmsche Verbindung des Auflenrings mit
dem stromfiihrenden Teil der Neutralelektrode konnte eine weitere Verringerung der Erwirmung
erzielt werden. Aufgrund dieser Ergebnisse kénnten weitere Uberlegungen zur Elektrodenform
und -aufbau die Anwendungsmdéglichkeiten und die Sicherheit in der Elektrochirurgie verbessern.
Dariiber hinaus wire es auch denkbar, weitere Operationsszenarien zu modellieren und auch die
aktive Elektrode numerisch genauer zu betrachten.
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Anhang A

Mathematischer Anhang

A.1 Losung der allgemeinen Wellengleichung

Dieser Abschnitt zeigt die Lésung der allgemeinen Wellengleichung (6.4) in kartesischen Koor-
dinaten mit einem Produktansatz. Dies ist moglich, da der Laplace-Operator in kartesischen
Koordinaten definiert ist als (LEHNER, 1996):

L 02 02 82
AV = g5Vet 3%+ 5

8.’1}2 X ‘/L

Dadurch lisst sich die vektorielle Wellengleichung (6.4) in einzelne skalare Gleichungen fiir die
jeweilige -, y-, und z-Komponente des elektrischen Feldes aufteilen:

AE; = juucE; — w’ueE, mit ¢ =x,y,2 . (A.1)

Die Konstante AZQ = jwuo — w?ue wird eingefiihrt, so dass die rechte Seite dieser Gleichung
zusammengefafit wird:

AE;, = -k -E, miti=x,y,2. (A.2)

Die Konstante k ist komplex. Zunéchst soll gezeigt werden, wie diese skalare Differentialgleichung
in kartesischen Koordinaten mit einem Produktansatz der Form

Ei(z,y,2) = [,(2) - g,(y) - hi(2) (A.3)

gelost wird (UNGER, 1988). Dabei werden die elektrischen Feldkomponenten als Produkt aus
drei voneinander unabhéngigen komplexen Koordinatenfunktionen L(x), gt(y) und h;(z) dar-

gestellt. Einsetzen in Gleichung (A.2) ergibt!

! Die Indizes ¢ werden im folgenden aus Griinden der Ubersichtlichkeit unterdriickt.
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&2 d? )
() e () 20+ () £0m22

Wenn diese Gleichung durch das Produkt f-g-h dividiert wird, erh&lt man folgende Beziehung:

h.

)

1 df 1 d*%g 1 d&h
=4 = =—k%. A4
f x2+g dy? +h dz2 - (A4)
—_— —— ~Y——
=F(z)  =G(y) =)

Diese Gleichung gilt fiir beliebige z,y und z nur dann, wenn die Funktionen F'(z),G(y) und
H(z) Konstanten sind. Fiihrt man fiir die drei Funktionen F',G und H die Konstanten kx,k;,
und k2 ein, so zerfillt die urspriingliche partielle Differentialgleichung in drei gewshnliche Dif-

ferentialgleichungen zweiter Ordnung.

1 dzi_ k2
z'da:Q -
1 d’g 2
R
1 d%h 5
pas Tk

Mit diesem Ansatz ergibt sich als Separationsbedingung die Dispersionsbeziehung:

k2 —I—E}Q, + k2 = k* = wiue — jwpuo . (A.5)

Die Lésung der ersten Differentialgleichung

1 . dz_i S
P
erhélt man mit dem Ansatz f(z) = C - e¥ka? als
f(x) — CX]. . e_flvkxlw + OX2 . €~j&x1$ . (A.G)

Setzt man zum Beispiel fiir k, den Zusammenhang k, = k. + jk¥ in Gleichung (A.6) ein, so
ergibt sich:

— (k! 5"y T(k! o RIAYS
f(x) e CX]. - e ](’”x+./l"x)‘L + CX2 . e</(1‘x+.7]”x)‘)“
L Oy - oMk o ik

it 17 A L
= Cxl .e VL el"xm + CYX2 . e]]"x”‘ -e ki . (A.’?)
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A.1 Lésung der allgemeinen Wellengleichung

Beriicksichtigt man noch die Zeitabhingigkeit e/“* und bildet den Realteil von Gleichung (A.7)
so ergibt sich:

NRe {i(l’)} = Re {Cxl Lo Tk | Jhlw | jwt + Cyo - eIk | o—kiw ejwt}
= Cy1 - cos (wt) - cos (—kjz) - "% 4 Oy - cos (wt) - cos (ki) - e~k
= (Cxl R 4 O - e_klxlw) - cos (wt) - cos (ki) . (A.8)

Die Losung stellt eine ebene Welle in positive und negative z-Richtung dar, die mit einem
Dampfungsanteil multipliziert wird. Man spricht auch von Abkling- oder evaneszentem Verhal-
ten. Die Konstante k., wird daher Phasenkonstante und k2 Dimpfungskonstante genannt.

Der in Abschnitt 6.2.3.2 diskutierte Fall ist auch in dieser Losung enthalten. Wenn die Sepa-
rationskonstante ky rein reell ist, so verschwindet der Dampfungsanteil e M * da dann kI =
gilt. Der hier skizzierte Weg gilt auch fiir alle anderen Koordinaten und Koordinatenfunktionen

gz(y) und h,(z).

Bei sehr kleinen Frequenzen w kann der Exponent kI des Démpfungsterms von Gleichung (A.8)
nach Gleichung (6.14) sehr klein werden, so dass sich die ddmpfende Exponentialfunktion ei-
ner linearen Funktion anndhert aufgrund ihrer Reihenentwicklung bei Vernachldssigung héherer
Ordnungen:

N
T z“ n

x

—1+1‘+§+ +H+H.
In diesem Fall fillt das elektrische Feld in einem leitenden Medium linear ab, wenn im gesamten
betrachteten Gebiet &z < 1 und damit auch nach Gleichung (6.18) kiz < 1 gilt, analog auch
fiir ky und k;'.

Bei hoheren Frequenzen bewirkt die Exponentialfunktion eine starke Dampfung des elektrischen
Feldes und einen exponentiellen Abfall im Inneren des leitfihigen Mediums. Der proportional
zum elektrischen Feld laufende Strom J wird mehr und mehr nach aufien gedringt. Dieses
Phinomen ist allgemein als Skineffekt bekannt (KUPFMULLER & KoHN, 2000).

Die Ansitze fiir g.(y) und h;(2) erfolgen analog. So erhélt man als Losung fiir das elektrische Feld
aus dem Produktansatz (A.3) unter Berticksichtigung der Zeitabhingigkeit eine Kombination
aus allen einzelnen Vektorkomponenten

[Cy1 - e7Ea® 4 Oy - e/ha®] [C 1oe B 4 Oy ek 31”}
E(mayaz7 t) = [OX3 . e_.’/ExziL‘ + C x4 ° el_,\zl 'y3 - € I_VZU + C y4 * elll§zll:| (Ag)
[CX5 ce Ikt 4 Ol - elhxs® o5 e —ikysy 4 Cye - elL33U:|

J-|c

I e

Gy - e kn® 4 O - ek )
et

. [Cz?) ce "Ik 4 O, - elk
. [Cz5 ce "Ik 4 O elke
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Alle Konstanten dieser Losung sind beliebig wihlbar und oft durch Randbedingungen des be-
trachtenen Problems festgelegt. Dariiber hinaus kénnen die Losungen prinzipiell linear super-
poniert werden und sind dann immer noch Losungen der Wellengleichung (A.2), solange die
Dispersionsbeziehung (A.5) erfiillt wird. Oft ergeben sich aber durch die jeweiligen Randbe-
dingungen des betrachteten Problems weitere Einschrinkungen oder Vereinfachungen, wie im
folgenden diskutiert wird.

Bei der Angabe dieser Losung wurde auf die Betrachtung von Reflexionen an Materialgrenzen
und den damit verbundenen Auswirkungen auf die Lésungsfunktion verzichtet. Vernachldssigt
man Reflexionen und nimmt eine freie Ausbreitung in einem unendlich grolen Medium an, so ist
der Wellenzahlvektor El einer Komponente des elektrischen Feldes L, parallel zu einer der drei
Raumrichtungen (LEHNER, 1996). Dadurch vereinfacht sich die Dispersionsbeziehung (A.5), da
sich die beiden anderen Komponenten des Vektors El zu Null ergeben und die entsprechende
Komponente k; durch die Gleichungen (6.13) und (6.14) eindeutig bestimmt ist. Die Losung (A.9)
stellt dann eine geddmpfte ebene Welle dar. Man nennt diese Welle auch homogene Welle. In
diesem besonderen Fall stellt Gleichung (A.9) auch die allgemeine Lésung des Feldproblems dar,
da durch die vorgegebenen dielektrischen Parameter und die Feldfrequenz der Wellenzahlvektor
eindeutig fetsgelegt wird (LEHNER, 1996).

Werden die Reflexionen an Materialgrenzen oder Réndern berticksichtigt, ist der Wellenzahl-
vektor Eb einer Komponente des elektrischen Feldes in der Regel nicht mehr parallel zu einer
ausgezeichneten Raumrichtung. Die Komponenten des Wellenzahlvektors EZ einer Komponen-
te des elektrischen Feldes £, sind durch die Dispersionsbeziehung (A.5) nicht mehr eindeutig
bestimmt. Daraus ergeben sich die inhomogene Wellen, die nicht mehr transversal und damit
keine ebenen Wellen sind. Auf eine weiterfiihrende Diskussion wird hier verzichtet. Stattdessen
sei hier auf die entsprechende Fachliteratur verwiesen (LEHNER, 1996).
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A.2 Der Absolutbetrag der komplexen Amplitude

Gegeben sei eine beliebige Losungsfunktion (A.7) der Wellengleichung. Der Betrag dieser kom-
plexen Funktion ergibt sich nach Gleichung (2.25). Zun#ichst werden der Real- und Imaginérteil
voneinander getrennt:

flz) =Cxa ceTIRT Lk Oy el L Ry (A.10)
= Cx1 (cos (ki) — jsin (k) e e 4 Ol (cos (kyx) + jsin (kiz)) e~ hxe (A.11)
= (C’XleM‘Im + nge_k;’lm) cos (kxas) + 7 (nge_ K _ C’Xlek;‘/m) sin (k;x) . (A.12)

Die Quadrate des Real- und Imaginérteiles ergeben sich zu:
R {f(z)} = (02 25 1 90 O + C2pe~ 2 ) cos? kL (A.13)
mE {f(z)} = (02 2K 90,1 O + O™ ) sin? kLo (A.14)

Die Summe der Quadrate ergibt schliefflich:

Re? {f(z)} +Im* {f(z)} = C2 e 4 02,672 490, Ca (cos® Kz — sin*kiz) . (A.15)

Danach ist nur noch die Wurzel zu ziehen. Diese Gleichung kann noch durch das Kosinusad-
ditionstheorem cos (2z) = cos?(z) — sin?(z) (BRONSTEJN & SEMENDJAEV, 1991) vereinfacht
werden und man erhilt:

f(@)] = 1/ e2Hs 4 CZe=2Hx 4904 Crz cos (2hLa) - (A.16)

Diese Gleichung vereinfacht sich noch weiter, wenn fiir die Konstanten C' bei symmetrischer
Problemgeometrie gilt Cy; = —Cie. Dann kénnen die Exponentialfunktionen zu einer hyperbo-
lischen Kosinusfunktion zusammengefasst werden:

|f(z)] = Cx1 - /2 cosh 2!z + 2 cos (2k. ) . (A.17)
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A.3 Die Fourierreihenentwicklung von Gradientenpulsen

Jede periodische Funktion kann in eine unendliche Reihe trigonometrischer Funktionen der Form

[ee]
+ Z ay, cos kx + by, sin kx) (A.18)
k=1

)
2

entwickelt werden (BRONSTEJN & SEMENDJAEV, 1991). Ebenso kann jede periodische Funktion

in der Zeit mit der Periodendauer 71" in eine Fourierreihe entwickelt werden. Mit dem Zusam-

menhang w = 2—” ergibt sich folgende Reihenentwicklung:

f(t)= ao + Z an cos (nwt) + by, sin (nwt)) . (A.19)
n=1

Die Koeflizienten der Reihenentwicklung sind gegeben durch:

2 / " (A.20)

7/2
9 T/2

a, = —/ f(t) - cos (nwt) dt , (A.21)
T J 7/
2 [T/2

n = —/ f(t) - sin (nwt) dt . (A.22)
T J 72

Um eine periodische Funktion in eine Fourierreihe zu entwickeln, ist es in erster Linie notwendig,
die Integrale in den Gleichungen (A.20), (A.21) und (A.22) zu lésen. Um die Ursprungsfunktion
zufriedenstellend wiedergeben zu kénnen, reicht es im Allgemeinen aus, anstatt unendlich vieler
Koeflizienten nur eine begrenzte Anzahl Harmonischer zu berticksichtigen. Die Auswahl der
Harmonischen ergibt sich immer aus der betrachteten Problemstellung.

Bei der Reihenentwicklung ergeben sich fiir gerade und ungerade Funktionen weitere Vereinfa-
chungen. Bei geraden Funktionen sind alle Koeflizienten b,, gleich Null, und es ergibt sich eine
reine Kosinusreihe. Bei ungeraden Funktionen sind die Koeffizienten ag und a,, gleich Null, und es
ergibt sich eine reine Sinusreihe. Der Koeffizient ag stellt den frequenzunabhéngigen Gleichanteil
der betrachteten Funktion dar, der bei ungeraden und damit zum Ursprung punktsymmetrischen
Funktionen verschwindet.

Fiir zahlreiche periodische Funktionen existieren bereits tabellierte Angaben in der Literatur
(BRONSTEIN & SEMENDJAEV, 1991). Die Fourierreihen der hier betrachteten Gradientenpuls-
formen konnten dort aber nicht gefunden werden, so dass eine explizite Ableitung der Reihenent-
wicklung notwendig war. Im folgenden Abschnitt wird zunéchst fiir den einfachen trapezformigen
Gradient die Fourierreihenentwicklung abgeleitet. Danach wird die Fourrierreihe fiir den dop-
pelten Trapezgradientenpuls entwickelt.
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Abbildung A.1: Schemazeichnung einer einfachen

f(t)

trapezformigen Gradientenpulsform. Der zeitliche
Verlauf der Pulsform wurde so gewahlt, dass die
gesamte Pulsform achsensymmetrisch zur y-Achse
ist und damit eine gerade Funktion darstellt, was

die Fourierreihenentwicklung vereinfacht.

0 a b

T2 t

A.3.1 Fourierreihe des einfachen trapezféormigen Gradientenpulses

Abbildung A.1 zeigt eine komplette Periode eines einfachen trapezférmigen Gradientenpulses mit
der Periodendauer T und der maximalen Amplitude B. In Abhéngigkeit der weiteren charakteris-
tischen Zeitpunkte a und b muss der Gradientenpuls zunfichst in eine abschnittsweise definierte
Funktion zerlegt werden, um die Integrale der Fourierkoeflizienten ag, a,, und b, stiickweise 16sen
zu kénnen. Nach Abbildung A.1 ergibt sich fiir eine Periode fiir f(¢) folgender Zusammenhang:

( 0 -2 <t< b
L (t+b) —b <t< —a
ft) =4 B —a <t< a
Lo(t-b) o <t< b
[0 <t< 3

(A.23)

Aus den fiinf einzelnen Teilfunktionen ergibt sich fiir den Koeffizienten ag nach Gleichung (A.20):

(A.24)

9 [T/2
ao:f/Tm
:%(bB t—i—b)dt—l—B/a b(t—b)dt)
—b —a @=0Ja
:%(bB (t2/2+bt)‘::+3(t)i —%(2/2—&) Z)
= % <bi (a2/2 — ab + b2/2) + 2Ba — % (=0°/2 - a2/2+ab)>
2B )
oo )
2B
~Goar Ot -9
_2B-(b+a)
==

Die Koeffizienten a, werden nach Gleichung (A.21) berechnet. Von den fiinf aus den Teilfunk-
tionen resultierenden Teilintegralen bleiben nur die drei {ibrig, die sich nicht zu Null ergeben.

Fiir die Koeffizienten a,, ergibt sich demnach:
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T/2
an = %/ f(t) - cos (nwt) dt (A.25)

-b —a a—
- s - g . "4
" ~"

I 1I 11

(bB /_a(t—l—b)-cos(nwt)dt—i—B/a cos (nwt) dt + Bb/ab(t—b)-cos(nwt)dt

Aus Griinden der Ubersichtlichkeit empfiehlt es sich an dieser Stelle die Integralsumme (A.25)
in die Teile I, IT und III aufzuspalten und jedes Integral getrennt zu 16sen. Fiir das Teilintegral
I ergibt sich:

/ (t+b) - cos (nwt) dt = / t - cos (nwt) dt + b/ cos (nwt) dt

-b -b -b

1 /1 —a b -
" (nw cos (nwt) + tsin (nw )) ; + o~ (sin (nwt)) ~
1 [cos(— 08 (—nwb
_ 1 (M i (—nwa) SR (—nwb))
nw nw nw

+ % (sin (—nwa) — sin (—nwb))

1 [cos(nwa) — cos (nwb)
Cnw

+ (a — b) sin (nwa)> . (A.26)

nw

Das Teilintegral II ist einfach zu integrieren und ergibt sich zu:

/a cos (nwt) dt = L - (sin (nwt)) ‘

nw
2
= — - sin (nwa) . (A.27)

nw

—a —a

Das Teilintegral IIT ist in seiner Struktur dem Teilintegral I sehr &hnlich. Bei der Berechnung
miissen die unterschiedlichen Integrationsgrenzen und die Differenz (¢ — b) vor dem Kosinus-
term berticksichtigt werden, was einen Vorzeichenwechsel verursacht. Danach ergibt sich das
Teilintegral III &hnlich zu Teilintegral I zu:

/b (t = b) - cos (nwt) dt = /bt-cos (nwt) dt — b/bcos (nwt) dt
' 1 (cos(nwb)—cos(na@a)

— (@ —b)sin (nwa)) . (A.28)

nw nw

Aus den drei Teillosungen lassen sich jetzt die Koeffizienten a,, zusammensetzen. Dabei sind die
jeweiligen Vorfaktoren B/(b — a), B und B/(a — b) der Integrale zu berticksichtigen, was bei
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Teilintegral IIT zu einem weiteren Vorzeichenwechsel fiihrt. Fiir die Koeffizienten a,, ergibt sich

schlief3lich:

+ (a — b) sin (nwa) 4+ 2(b — a) sin (nwa)

Ap =

2B 1 [ cos(nwa) — cos (nwb)
(b—a) - T nw nw

cos (nwb) — cos (nwa)

- + (a — b) sin (nwa))

nw

B-T cos (nwa) — cos (nwb)
T (b—a)- 72 n?2 ' (A.29)

Die Koeflizienten b,, sind gleich Null, da in dem hier betrachteten Fall einer achsensymmetrischen
Rampe die Funktion f(t) gerade ist. Fiir die stiickweise definierte Funktion f(t) (A.23) ergibt
sich unter Kombination von (A.24) und (A.29) folgende Reihenentwicklung:

F@) =

n2

B.-(b+a) B-T i <cos (nwa) — cos (nwb)

T + b—a) - cos (nwt)) . (A.30)

n=1
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f(t)

Abbildung A.2: Schemazeichnung einer doppel-
ten trapezférmigen Gradientenpulsform. Im allge-
meinen Fall ist die Pulsform nicht symmetrisch
zum Ursprung, wenn die Amplitudenwerte B und C
unterschiedlich sind oder die Zeitpunkte a und h,
oder b und g, oder c und f, oder d und e asymme- o ef g h T2t
trisch beziiglich der Entfernung zur y-Achse sind.
Die Fourierreihenentwicklung wird in diesem allge-
meinen Fall kompliziert, erlaubt aber die Darstel-

lung komplexer Gradientenpulsformen. C

-T2 a b c d

A.3.2 Fourierreihe des doppelten Trapezgradientenpulses

Abbildung A.2 zeigt eine komplette Periode eines komplexen, asymmetrischen, doppelten und
trapezformigen Gradientenpulses mit der Periodendauer 7" und den maximalen Amplituden
B und C. In Abhingigkeit der frei wahlbaren Zeitpunkte a bis A muss der Gradientenpuls
zunichst wiederum in eine abschnittsweise definierte Funktion zerlegt werden, um die Integrale
der Fourierkoeflizienten ag, a, und b, stiickweise 16sen zu koénnen. Nach Abbildung A.2 ergibt
sich fiir eine Periode fiir f(¢) folgender Zusammenhang:

( 0 -1 <t< a

. (t—a) a <t< b

C b <t< ¢

L (t—d) ¢ <t< d

F(t) =4 0 d <t< e (A.31)

Ao(t-e) e <t< f

B f <t< g

Zrt=h) g <t< h

{ 0 h<t< I

Durch die freie Wahl der Zeitpunkte a bis h ist die Funktion im allgemeinen nicht symme-
trisch zum Ursprung, wodurch sich die Fourierreihe zunidchst nicht vereinfachen ldsst, indem
Symmetrien ausgenutzt werden. Daher werden im folgenden zunéichst die allgemeinen Formeln
fir die Koeffizienten ag, a, und b, abgeleitet, bevor am Ende ein Spezialfall eines zum Ur-
sprung symmetrischen Gradienten betrachtet wird und gezeigt wird, wie dann die allgemeinen
Koeffizientenformeln vereinfacht werden kénnen.

Aus den neun einzelnen Teilfunktionen ergibt sich fiir den Koeffizienten ag nach Gleichung (A.20)
analog zur Berechnung in Gleichung (A.24)2:

“Da die zu 16senden Integrale von der Struktur denen in Gleichung (A.24) entsprechen, wurden zur besseren
Ubersichtlichkeit einige Zwischenschritte bei der Ableitung von Gleichung (A.32) weggelassen. Der Losungsweg
der auftretenden Integrale entspricht denen in Gleichung (A.24).
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A.3 Die Fourierreihenentwicklung von Gradientenpulsen

9 T/2
@0=f/_T/2f(t)dt
2( C [ ‘ c [
—T(b_a/a(t—a)dt—i-C’/b dt+c_d/C (t—d) dt
+f]ie/cf(t—e)dt+B/fy dt+g_ih gh(t—h) dt)
:76'(g_a)+O‘(c—b)+c'(;i_c)+B'(J;_e)+B~(g—f)+B'(Z_g)
=%-(C-(—a—b+c+d)+B~(—e—f+g+h)). (A.32)

Die Koeffizienten a,, werden auch bei diesem Beispiel nach Gleichung (A.21) berechnet. Von den
neun aus den Teilfunktionen resultierenden Teilintegralen bleiben nur die sechs {ibrig, die sich
nicht zu Null ergeben. Die Form der Integrale gleicht wieder den Integralen in Gleichung (A.25).
Fiir die Koeffizienten a,, ergibt sich demnach:

9 T/2
an = —/ f(t) - cos (nwt) dt (A.33)
T J 72
2 ¢ [ ‘ c [?
= — (t —a)-cos (nwt)dt+C [ cos (nwt)dt+ (t —d) - cos (nwt) dt
T1b—a/, b c—d /.,
T it 11

B f g B h

+ / (t —e) - cos (nwt) dt +B/ cos (nwt) dt +—— / (t = h) - cos (nwt) dt
f —¢€ Je , f 9~ h J

v~ N ! ~ ~ -

v v VI

Auch in diesem Fall empfiehlt es sich an dieser Stelle die Integralsumme (A.33) in die Teile
I, II, II1, TV, V und VI aufzuspalten und jedes Integral getrennt zu 16sen. Die Teilintegrale
dhneln in ihrer Form den in den Gleichungen (A.26) und (A.27) bereits geldsten Integralen. Die
Lésungen kénnen daher leicht von den Gleichungen (A.26) und (A.27) abgeleitet werden. Fiir
das Teilintegral I ergibt sich demnach:

/ab (¢ — a) - cos (ruwt) dt = L (cos (nwb) — cos (nwa) + (b — a)sin (nwb)) . (A.34)

nw

Analog dazu ergeben sich fiir die Teilintegrale III, IV und VI:
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/ ! - cos (nwt) dt = % (COS (”“d)n_wcos (") | (4 - )sin (nwc)) , (A.35)
/f t—e) - cos (nwt) dt = % (COS (”“f)n_wcos (we) | (f —e)sin (nwf)) . (A.36)
/ ' - cos (nwt) dt = % (COS (”“h)n_wcos (n%9) 4 (b — g)sin (nwg)) (A3

Fiir die Teilintegrale IT und V kdénnen ebenfalls einfach die Losungen angegeben werden, unter
Berticksichtigung der bereits abgeleiteten Losung fiir das in seiner Struktur &hnliche Integral in

Gleichung (A.27):

/b cos (nwt) d nlw (sin (nwe) — sin (nwb)) (A.38)
/fg cos (nwt) d nlw (sin (nwg) — sin (nwf)) . (A.39)

Kombiniert man die einzelnen Teillosungen miteinander, so ergibt sich die allgemeine Losung
fiir die Koeflizienten a,,:

nw

1 < C '[Cos(nwb)—cos(nwa)+(b_a)‘sin (nwb)]

+C' - [sin (nwc) — sin (nwb)]
c [COS (nwd) — cos (nwc)

+c—d

B [cos(nwf) — cos (nwe)

nw

+(d—c)-sin (nwc)]

+ +(f—e)-sin(nwf)-

f—e | nw
+B - [sin (nwg) — sin (nwf)]
B [cos (nwh) — cos (nwg)

g—h nw +(h—g) sin (nwg)_ ) : (A.40)

Die Koeffizienten b,, werden analog zu den Koeflizienten a,, berechnet gemif8 Gleichung (A.22).
Es ergibt sich wiederum eine Integralsumme aus sechs Teilintegralen, die getrennt berechnet
werden kénnen:
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A.3 Die Fourierreihenentwicklung von Gradientenpulsen

9 (T2
b, = —/ f(t) - sin (nwt) dt (A.41)
T J_ 72
2 ¢ P 4
=7 5=2 /u (t — a) - sin (nwt) dt +C/ sin nwt) dt-l— 4 (t —d) - sin (nwt) dt
T il ]
B (! g B ("
+ / (t —e) - sin (nwt) dt +B/ sin (nwt) dt + —— (t — h) - sin (nwt) dt
f —¢€ Je f g — h Jy ,
v v V1

Der einzige Unterschied zwischen den Gleichungen (A.33) und (A.41) besteht darin, dass an-
statt der Kosinusfunktionen nun Sinusfunktionen in den Integralen auftauchen. Es sind daher
Teilintegrale der Form [(¢ - sin (nwt))d¢ und [ sin (nwt)d¢ zu lésen. Nach BRONSTEJN UND
SEMENDJAEV (1991) ergeben sich die Losungen dieser Integrale zu:

) sin (nwt) - cos (nwt)
/(t -sin (nwt)) dt = o " +k, (A.42)
1
/sin (nwt) dt = —— cos (nwt) + k . (A.43)
nw

Vergleicht man die Losung des Integrals (A.42) mit der Struktur der Gleichung (A.34) so erkennt
man, dass sich die Teilintegrale I, III, IV und VI aus Gleichung (A.41) durch den Vergleich von
Gleichung (A.42) mit Gleichung (A.34) leicht 18sen lassen, wenn man die Sinus- und Kosinus-
funktionen miteinander vertauscht und dabei die Vorzeichenwechsel beachtet. Die Teilintegrale
I, 1T, IV und VI der Koeffizienten b,, k6nnen somit aus den bereits berechneten Lésungen der
Teilintegrale der Koeffizienten a,, abgeleitet werden. Dies gilt auch fiir die Teilintegrale IT und V.
Eine aufwéindige rechnerische Ableitung, die zum gleichen Ergebnis flihren wiirde, kann somit
an dieser Stelle entfallen. Stattdessen wird direkt die allgemeine Losung fiir die Koeffizienten b,
angegeben, die in ihrer Struktur der allgemeinen Losung (A.40) der Koeffizienten a,, &hnlich ist:

L.( ¢ .[Si“(Wb)_Sm(W“)+(a_b)-cos (nwb)]

[cos (nwb) — cos (nwc)]

sin (nwd — sin (nwc)

+ (¢ —d) - cos (nwc)]

sin nwf — sin (nwe)

d |
= + e 1) cos ()|

[cos (nwf) — cos (nwg)]

sin (nwh) — sin (nwg)

g—h‘[ nw

+ (g —h) - cos (nwg)]) . (A.44)
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Fiir die stiickweise definierte Funktion f(t) (A.31) ergibt sich unter Kombination von (A.32),
(A.40) und (A.44) die zugehorige Fourierreihenentwicklung auf deren expliziten Angabe hier
aufgrund der Grofle der einzelnen Komponenten verzichtet wird. Stattdessen wird der weiter

oben genannte Speziallfall eines zum Ursprung symmetrischen Gradientenpulses analog der in
Abschnitt 7.2 beschriebenen Pulsform betrachtet.

Im Fall eines symmetrischen Gradientenpulses sei ¢ = —B, d=e¢ =0,c= —f, b = —g und
a = —h (vgl. Abbildung 7.3). In diesem Fall ergibt sich nach Gleichung (A.32):

ap=— (—B-(h+g—f)+B(-f+g+h))

S )

(A.45)

Der Koeffizient a(p verschwindet, da die Pulsform bei der hier angenommenen symmetrischen
Form {iiber keinen Gleichanteil verfligt. Da die Funktion ungerade ist, miissen die Koeffizien-
ten a, ebenfalls verschwinden. Dies kann mit Gleichung (A.40) unter Einsetzen der Koeffizien-
tenabhingigkeiten gezeigt werden:

Uy = % . % i lj - cos (nwg)n—wcos (nwh) + (g — h) - sin (nwg)
) =3 .
—B - [sin (nwg) — sin (nwf)]
) i ’
—i—E Sl coiinwf) — f-sin (nwf)]
) =411 i
—i—E- %—I—f'sin(nwf)]
h ﬁrIH .
+B - [sin (nwg) — sin (nwf)]
N —~ P
+g f - cos (nwh)n—wcos (nwg) L (h=g) - sin (nwg)
N ~ ’
=0. (A.46)

Die Koeflizienten b,, ergeben sich durch Einsetzen der Koeffizientenabhéngigkeiten in Gleichung
(A.44). Analog zu Gleichung (A.46) ergeben sich einige Vereinfachungen, da manche Terme
wegfallen und andere zusammengefasst werden koénnen:
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21 —B  [—sin (nwg) + sin (nwh)
bn—f~ml ﬁ_gh[ nw +(g_h).COS(nwg),
e
—B - [cos (nwg) — cos (nw[)]
=11
—B [sin (nwf)
j___f . [T — f - cos (nwf)]l
BT
b N ’
+B: [cos (nw f) — cos (nwg)l
=11
e nw L
=~
2 1|, sin (nwh) — sin (nwg)
T | ST “Os(m"g)],
2.1
+2B- [cos (nwf) — cos (nwg)l
ﬁ;ﬂ
[sin (nwf) ]
+2B - | /=2 — cos (nwf)
k nw |

ﬁﬁﬂ
_ 4B 1 sin (nwh) — sin (nwg)  sin (nwf)
T nw nw - (g — h) nw- f

+ cos (nwg) + cos (nwf) — cos (nwg) — cos (nwf))

4B 1 .<sin(nwh)—sin(nwg)+sin(nwf)>

T  n2w? g—nh f
BT 1 sin (nwh) — sin (nwg)  sin (nwf)
=— m( o + 7 > (A.47)

Fiir die stiickweise definierte Funktion f(¢) (A.31) ergibt sich mit Gleichung (A.47) schlieBlich
folgende Reihenentwicklung im Falle der punktsymmetrischen, doppelten und trapezférmigen
Gradientenpulsform:
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£(t) = B-T i [<sin (n;;h')(;ih;)(nwg) . sir;&ffé}f)) sin (nwt)] . (A 48)

n=1
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Ubersichtstabellen
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Ubersichtstabellen

Nummer Name Dichte p  Spez. Wirme ¢,  Wéarmeleitf. A Perfusion
in kg/m?®  in J/(kg-K) in W/(K-m) in ml/(kg - min)

1 Knochenmark 1810 1256 0,220

2 Fett 920 2973 0,250 28
3 Knochen 1810 1256 0,360

4 Weifle Substanz 1040 3664 0,503 560
5 Graue Substanz 1040 3664 0,565 560
6 Haut, trocken 1010 3662 0,293 120
7 Haut, feucht 1010 3662 0,293 120
8 Auge 1170 3664 0,594

9 Muskel 1040 3639 0,500 38
10 Blut 1060 3894 0,530

11 CSF 1010 4182 0,598

12 Nervengewebe 1040 3664 0,500

13 Linse 1100 3664 0,400

14 Nervus Opticus 1040 3664 0,500

15 Knorpel 1100 3664 0,495

16 Lunge 260 3664 0,425 400
17 Darm 1041 3664 0,556 850
18 Niere 1050 3890 0,535 3750
19 Leber 1050 3600 0,490 1050
20 Driisengewebe 1050 3664 0,500

21 Milz 1054 3720 0,539 1200
22 Magen 1050 3664 0,525 400
23 Pankreas 1045 3664 0,441 600
24 Herzmuskel 1060 3639 0,527 900
25 Luft 1,29 1,01 0,026

26 Aluminium 2702 896 220,0

27 Hydrogel 1010 4182 0,600

28 Platin-Iridium 21570 130 31,0

29 PTFE 2150 1010 0,160

Tabelle B.1: Physikalische Gewebe- und Materialparameter die zur Lésung des thermodynamischen

Problems verwendet wurden nach Duck (1990); GAUTHERIE (1990); KuCHLING (1991); LEGGET

UND WILLIAMS (1991). Die Tabelle weist Liicken auf, da nicht fiir alle Materialien Perfusionswerte
in der Literatur verfiigbar sind.
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Nummer Name 8,25 MHz 42,6 MHz
Permitt. e, Leitfdhigk. ¢ Permitt. ¢, Leitfdhigk. o

in S/m in S/m
1 Knochenmark 58,96 0,120 19,83 0,149
2 Fett 32,30 0,051 15,13 0,064
3 Knochen 79,57 0,119 35,10 0,152
4 Weifle Substanz 190,50 0,149 82,94 0,261
5 Graue Substanz 357,45 0,271 121,92 0,466
6 Haut, trocken 417,14 0,172 119,11 0,386
7 Haut, feucht 258,32 0,355 91,01 0,458
8 Auge 248,14 0,789 85,82 0,864
9 Muskel 198,01 0,607 80,89 0,672
10 Blut 341,08 1,083 100,56 1,184
11 CSF 108,72 2,002 102,81 2,035
12 Nervengewebe 178,83 0,215 65,31 0,290
13 Linse 103,87 0,217 57,50 0,270
14 Nervus Opticus 178,83 0,215 65,31 0,290
15 Knorpel 211,58 0,360 72,87 0,433
16 Lunge 146,93 0,218 44,64 0,275
17 Darm 315,21 0,475 111,86 0,603
18 Niere 429,62 0,487 145,21 0,684
19 Leber 256,30 0,305 95,59 0,415
20 Driisengewebe 188,87 0,713 81,16 0,765
21 Milz 527,54 0,477 138,68 0,693
22 Magen 295,65 0,772 97,49 0,859
23 Pankreas 188,87 0,713 81,16 0,765
24 Herzmuskel 336,56 0,486 126,71 0,634

Tabelle B.2: Dielektrische Gewebeparameter fiir 8,25 MHz und 42,6 MHz, die zur Lésung des
elektrodynamischen Problems verwendet wurden nach GABRIEL ET AL. (1996A); GABRIEL ET AL.
(1996B); GABRIEL ET AL. (1996¢C).
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Nummer Name 63,9 MHz 127,8 MHz
Permitt. ¢, Leitfdhigk. ¢ Permitt. ¢, Leitfdhigk. o

in S/m in S/m
1 Knochenmark 16,44 0,154 13,54 0,162
2 Fett 13,65 0,066 12,37 0,070
3 Knochen 30,88 0,161 26,29 0,180
4 Weifle Substanz 67,88 0,291 52,56 0,342
5 Graue Substanz 97,49 0,511 73,55 0,587
6 Haut, trocken 92,25 0,436 65,48 0,523
7 Haut, feucht 76,77 0,488 61,61 0,544
8 Auge 75,33 0,883 65,01 0,918
9 Muskel 72,26 0,688 63,51 0,719
10 Blut 86,49 1,207 73,18 1,249
11 CSF 97,34 2,066 84,07 2,143
12 Nervengewebe 55,09 0,312 44,08 0,354
13 Linse 50,36 0,286 42,80 0,313
14 Nervus Opticus 55,09 0,312 44,08 0,354
15 Knorpel 62,94 0,452 52,94 0,488
16 Lunge 37,12 0,289 29,48 0,316
17 Darm 94,71 0,638 76,6- 0,705
18 Niere 118,65 0,741 89,67 0,852
19 Leber 80,61 0,448 64,28 0,511
20 Driisengewebe 73,97 0,778 66,79 0,804
21 Milz 110,65 0,744 82,94 0,835
22 Magen 85,85 0,878 74,91 0,913
23 Pankreas 73,97 0,778 66,79 0,804
24 Herzmuskel 106,58 0,678 84,30 0,766

Tabelle B.3: Dielektrische Gewebeparameter fiir 63,9 MHz und 127,8 MHz, die zur Lésung des
elektrodynamischen Problems verwendet wurden nach GABRIEL ET AL. (1996A); GABRIEL ET AL.
(1996B); GABRIEL ET AL. (1996¢C).
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Nummer Name Permitt. e, Leitfihigk. o

in S/m
2 Fett 62 0,044
6 Haut, trocken 1083 0,003
7 Haut, feucht 5160 0,157
9 Muskel 4755 0,418
10 Blut 4572 0,727
25 Luft 1,0 0
26 Aluminium 1,0 00
27 Hydrogel 1350 0,150
28 Platin-Iridium 1,0 3,125 - 10°
29 PTFE 2,1 1-1071¢

Tabelle B.4: Dielektrische Gewebeparameter fiir 350 kHz, die zur Losung des elektrodynamischen

Neutralelektrodenproblems notwendig sind nach GABRIEL ET AL. (1996A); GABRIEL ET AL.

(1996B); GABRIEL ET AL. (1996¢); KUCHLING (1991). Weiterhin sind die dielektrischen Pa-

rameter fiir die librigen verwendeten Materialien mit angegeben worden. Diese Werte werden als

konstant iiber den gesamten Frequenzbereich betrachtet. Die Nummerierung der Gewebe und Mate-
rialien richtet sich nach Tabelle B.1.
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Symbolverzeichnis

Bei den gewihlten Bezeichnungen und mathematischen Symbole werden die im folgenden
erlauterten Konventionen verwandt:

e Symbole fiir reelle oder komplexe Zahlen sind griechische Buchstaben oder kursiv gedruckte
lateinische Buchstaben, z. B. z, w.

e Komplexe Groflen und Funktionen werden durch einen Unterstrich gekennzeichnet, z. B.
k. Konjugiert komplexe Groflen werden zusétzlich durch einen hochgestellten Stern ge-
kennzeichnet, z. B. o*.

e Real- und Imaginéirteil komplexer Grofien werden mit Hochkommata gekennzeichnet. Der
Realteil erhélt ein Hochkomma, der Imaginérteil zwei, z. B. ¢, = ¢, — jel.

o NRe{k} ist der Realteil von k£ und IJm{k} der Imaginérteil.

e Matrizen sind durch fettgedruckte Grofibuchstaben hervorgehoben, z. B. C. Spaltenvek-
toren werden ebenfalls fettgedruckt und zusitzlich durch einen Pfeil gekennzeichnet, z.
B. é. Dreidimensionale vektorielle GroBlen werden durch kursive lateinische Buchstaben
dargestellt, z. B. E.

e Die Indizierung von Skalaren und Vektorkomponenten im Sinne einer Nummerierung er-
folgt durch kursiv gedruckte Kleinbuchstaben oder ganze Zahlen, z. B. z;, xy. Als Symbol-
bezeichner kommen ebenfalls ganze Zahlen oder griechische Kleinbuchstaben in Betracht.
Daiiber hinaus werden auch nicht kursiv gedruckte lateinische Buchstaben verwendet, z.
B. wo, tmax-

e Eine partielle Zeitableitung ist durch einen tiber das Symbol gesetzten Punkt gekennzeich-

net, z. B. b = 9b/dt
o Ist A eine Matrix, so bezeichnet AT die transponierte Matrix und A~! die inverse Matrix.
e Grofen auf dem dualen Gitter G werden mit einer Tilde gekennzeichnet, z. B. C.
In den folgenden Tabellen werden alle Symbole in der Reihenfolge ihres ersten Auftretens in

dieser Arbeit aufgefiihrt. Ein Symbol wird nur dann noch einmal aufgefithrt, wenn es im ent-
sprechenden Kapitel eine andere als die bereits vorgestellte Bedeutung hat.
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Symbolverzeichnis

Allgemein

z,Y, 2 Ortskoordinaten

fz,y,2) Ortsfunktion

t Zeit

f@) Zeitfunktion

7 imaginire Einheit

0 Ordnung (Landau-Symbol)

I Einheitsmatrix

[|1X]] euklidische Norm eines Vektors
[1X|] oo Maximumnorm eines Vektors
[|A]| beliebige Matrixnorm

[|Al]2 Spektralnorm einer Matrix

g Gitterraum

G dualer Gitterraum
c,C diskreter Rotationsoperator (auf G, G)
S,S diskreter Divergenzoperator (auf G, G)

—ST _sT diskreter Gradientenoperator (auf G, G)
A Gitterschrittweite
i, N Indexgrofen, z. B. zur Nummerierung von Gitterzellen
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v Nabla-Operator

E elektrische Feldstédrke

D elektrische Verschiebungsdichte

H magnetische Feldstirke

B magnetische Flussdichte

J elektrische Stromdichte

J. eingepragte elektrische Stromdichte

Pe elektrische Raumladungsdichte

€0 elektrische Feldkonstante

Er relative Permittivitat

) magnetische Feldkonstante

Ly Permeabilitit

o elektrische Leitfihigkeit

O statische Ionenleitfihigkeit von Gewebe

w Kreisfrequenz

@ Phasenwinkel

b Vektor der magnetischen Fliisse

é Vektor der elektrischen Spannungen

h Vektor der magnetischen Spannungen

d Vektor der elektrischen Fliisse

j Vektor der elektrischen Stréme

j:a Vektor der eingeprégten elektrischen Strome

de Vektor der elektrischen Ladungen

L] Vektor der elektrischen Potentiale

M. Operator zur Verkniipfung von d und &

M, Operator zur Verkniipfung von b und h

M, Operator zur Verkniipfung von _fund é

D, Niherungsmatrix des Operators M. (Permittivititsmatrix)
D, Néherungsmatrix des Operators M, (Permeabilitatsmatrix)
D, Niherungsmatrix des Operators M, (Leitfihigkeitsmatrix)
D Matrix mit den Kantenldngen der Gitterzellen
Da Matrix mit den Flicheninhalten der Gitterzellen
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Instationdre Wiarmeleitung - Kapitel 2

T Temperatur

T3 Bluttemperatur

P Dichte

B Dichte des Blutes

Cs spezifische Warmekapazitit

cB spezifische Warmekapazitit des Blutes

A Wirmeleitfahigkeit

wp Gewebeperfusion

kg Zusammenfassung von Durchblutungseigenschaften
QHF absorbierte Leistungsdichte

aMm generierte Leistungsdichte durch metabolische Prozesse
Q Gesamtwirmeleistungsdichte

Qn Wairmeleistungsdichte in der n-ten Gitterzelle
J_;, Warmestromdichte

Ini i-ter Warmestrom in oder aus der n-ten Gitterzelle
T, Temperatur der n-ten Gitterzelle

kB n Blutkonstante der n-ten Gitterzelle

t Vektor der Temperaturen

_fw Vektor der Warmestrome

q Vektor der Warmequellen

D Matrix mit den Dichten und Warmekapazititen
D, Matrix mit den Warmeleitfahigkeiten

Dg Matrix mit den Bluteigenschaften

Dy Matrix mit den Flacheninhalten der Gitterzellen
Dv Matrix mit den Volumina der Gitterzellen

A Matrix: A=S.D, -ST

B Iterationsmatrix des Zeitintegrationsverfahrens
o(B) Spektralradius der Matrix B

x(B) Konditionszahl der Matrix B

At Zeitschrittweite

Aty Léinge des n-ten Zeitschrittes

Atmax maximale stabile Zeitschrittweite

Az, Ay, Az Gitterschrittweiten in z-, y- und 2-Richtung

¥ skalare Konstante

k skalare Konstante
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Gekoppelte Probleme - Kapitel 2

P,
EAm
AV,

qn,HF

mittlere Verlustleistung in der n-ten Gitterzelle
Mittelwert des elektrischen Feldes
Volumen der n-ten Gitterzelle

Verlustleistungsdichte in der n-ten Gitterzelle

Dielektrische Eigenschaften von Koérpergewebe - Kapitel 3

R

Gesamtstromdichte durch biologisches Gewebe
Polarisation

Orientierungspolarisation

Polarisation in einem statischen Feld

instantane Orientierungspolarisation

Relaxationszeit

relative Gewebepermittivitdt bei unendlich hoher Frequenz
relative Gewebepermittivitiat bei sehr kleinen Frequenzen
effektive Leitfahigkeit

empirischer skalarer Verteilungsparameter

relative Gewebepermittivitit des n-ten Dispersionstermes
Relaxationszeit des n-ten Dispersionstermes

empirischer skalarer Verteilungsparameter des n-ten Dispersionstermes

Biologische Wirkung elektromagnetischer Felder - Kapitel 4

[
= el

- Ry~ o N

Dauer eines Stimulus, Pulsdauer
Refraktirzeit einer erregbaren Zelle
Membranzeitkonstante

Rheobase

Stromstérke

Periodendauer

Frequenz

infinitesimales Volumen

komplexe elektrische Leistung
Absolutbetrag des elektrischen Feldes
Wirkleistung

spezifische Absorptionsrate
Temperaturerhhung

Wechselwirkungszeit

229



Symbolverzeichnis

Numerische Voruntersuchungen - Kapitel 5

Matrizen

Spaltenvektoren

Diagonalmatrizen

Dreiecksmatrizen

skalare Relaxationsparameter

Residuum im k-ten Iterationsschritt
Fehlervektor im k-ten Iterationsschritt
Initiales Residuum

Initialer Fehlervektor

exakter Losungsvektor

Losungsvektor im k-ten Iterationsschritt
Spektralkondition

Ma# fiir die Erfiillung der Kontinuitatsgleichung

Anfangstemperatur

Umgebungstemperatur

Kugelradius

Temperaturleitfahigkeit

Biot-Zahl

Konstanten, abhéingig von der Biot-Zahl B1

mittlere Leistung

Pulsleistung

Pulsintervalldauer

deponierte Energie pro Pulsintervall

deponierte Energie durch die mittlere Leistung P

230



Magnetische Hochfrequenzfelder bei der MR-Tomographie - Kapitel 6
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Magnetische Gradientenfelder - Kapitel 7 / Anhang A

G;, G? Komponenten des magnetischen Feldgradienten
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B, C Maximalamplituden der Gradientenpulsformen
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Optimierung von Neutralelektroden in der Elektrochirurgie - Kapitel 8
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